This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonnegative integer is odd iff it is one plus twice another nonnegative integer. (Contributed by AV, 19-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oddnn02np1 | |- ( N e. NN0 -> ( -. 2 || N <-> E. n e. NN0 ( ( 2 x. n ) + 1 ) = N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | |- ( ( ( 2 x. n ) + 1 ) = N -> ( ( ( 2 x. n ) + 1 ) e. NN0 <-> N e. NN0 ) ) |
|
| 2 | elnn0z | |- ( ( ( 2 x. n ) + 1 ) e. NN0 <-> ( ( ( 2 x. n ) + 1 ) e. ZZ /\ 0 <_ ( ( 2 x. n ) + 1 ) ) ) |
|
| 3 | 2tnp1ge0ge0 | |- ( n e. ZZ -> ( 0 <_ ( ( 2 x. n ) + 1 ) <-> 0 <_ n ) ) |
|
| 4 | 3 | biimpd | |- ( n e. ZZ -> ( 0 <_ ( ( 2 x. n ) + 1 ) -> 0 <_ n ) ) |
| 5 | 4 | imdistani | |- ( ( n e. ZZ /\ 0 <_ ( ( 2 x. n ) + 1 ) ) -> ( n e. ZZ /\ 0 <_ n ) ) |
| 6 | 5 | expcom | |- ( 0 <_ ( ( 2 x. n ) + 1 ) -> ( n e. ZZ -> ( n e. ZZ /\ 0 <_ n ) ) ) |
| 7 | elnn0z | |- ( n e. NN0 <-> ( n e. ZZ /\ 0 <_ n ) ) |
|
| 8 | 6 7 | imbitrrdi | |- ( 0 <_ ( ( 2 x. n ) + 1 ) -> ( n e. ZZ -> n e. NN0 ) ) |
| 9 | 2 8 | simplbiim | |- ( ( ( 2 x. n ) + 1 ) e. NN0 -> ( n e. ZZ -> n e. NN0 ) ) |
| 10 | 1 9 | biimtrrdi | |- ( ( ( 2 x. n ) + 1 ) = N -> ( N e. NN0 -> ( n e. ZZ -> n e. NN0 ) ) ) |
| 11 | 10 | com13 | |- ( n e. ZZ -> ( N e. NN0 -> ( ( ( 2 x. n ) + 1 ) = N -> n e. NN0 ) ) ) |
| 12 | 11 | impcom | |- ( ( N e. NN0 /\ n e. ZZ ) -> ( ( ( 2 x. n ) + 1 ) = N -> n e. NN0 ) ) |
| 13 | 12 | pm4.71rd | |- ( ( N e. NN0 /\ n e. ZZ ) -> ( ( ( 2 x. n ) + 1 ) = N <-> ( n e. NN0 /\ ( ( 2 x. n ) + 1 ) = N ) ) ) |
| 14 | 13 | bicomd | |- ( ( N e. NN0 /\ n e. ZZ ) -> ( ( n e. NN0 /\ ( ( 2 x. n ) + 1 ) = N ) <-> ( ( 2 x. n ) + 1 ) = N ) ) |
| 15 | 14 | rexbidva | |- ( N e. NN0 -> ( E. n e. ZZ ( n e. NN0 /\ ( ( 2 x. n ) + 1 ) = N ) <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
| 16 | nn0ssz | |- NN0 C_ ZZ |
|
| 17 | rexss | |- ( NN0 C_ ZZ -> ( E. n e. NN0 ( ( 2 x. n ) + 1 ) = N <-> E. n e. ZZ ( n e. NN0 /\ ( ( 2 x. n ) + 1 ) = N ) ) ) |
|
| 18 | 16 17 | mp1i | |- ( N e. NN0 -> ( E. n e. NN0 ( ( 2 x. n ) + 1 ) = N <-> E. n e. ZZ ( n e. NN0 /\ ( ( 2 x. n ) + 1 ) = N ) ) ) |
| 19 | nn0z | |- ( N e. NN0 -> N e. ZZ ) |
|
| 20 | odd2np1 | |- ( N e. ZZ -> ( -. 2 || N <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
|
| 21 | 19 20 | syl | |- ( N e. NN0 -> ( -. 2 || N <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
| 22 | 15 18 21 | 3bitr4rd | |- ( N e. NN0 -> ( -. 2 || N <-> E. n e. NN0 ( ( 2 x. n ) + 1 ) = N ) ) |