This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two times an integer plus one is not negative iff the integer is not negative. (Contributed by AV, 19-Jun-2021) (Proof shortened by AV, 10-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2tnp1ge0ge0 | ⊢ ( 𝑁 ∈ ℤ → ( 0 ≤ ( ( 2 · 𝑁 ) + 1 ) ↔ 0 ≤ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2z | ⊢ 2 ∈ ℤ | |
| 2 | 1 | a1i | ⊢ ( 𝑁 ∈ ℤ → 2 ∈ ℤ ) |
| 3 | id | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℤ ) | |
| 4 | 2 3 | zmulcld | ⊢ ( 𝑁 ∈ ℤ → ( 2 · 𝑁 ) ∈ ℤ ) |
| 5 | 4 | peano2zd | ⊢ ( 𝑁 ∈ ℤ → ( ( 2 · 𝑁 ) + 1 ) ∈ ℤ ) |
| 6 | 5 | zred | ⊢ ( 𝑁 ∈ ℤ → ( ( 2 · 𝑁 ) + 1 ) ∈ ℝ ) |
| 7 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 8 | 7 | a1i | ⊢ ( 𝑁 ∈ ℤ → 2 ∈ ℝ+ ) |
| 9 | 6 8 | ge0divd | ⊢ ( 𝑁 ∈ ℤ → ( 0 ≤ ( ( 2 · 𝑁 ) + 1 ) ↔ 0 ≤ ( ( ( 2 · 𝑁 ) + 1 ) / 2 ) ) ) |
| 10 | 4 | zcnd | ⊢ ( 𝑁 ∈ ℤ → ( 2 · 𝑁 ) ∈ ℂ ) |
| 11 | 1cnd | ⊢ ( 𝑁 ∈ ℤ → 1 ∈ ℂ ) | |
| 12 | 2cnne0 | ⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) | |
| 13 | 12 | a1i | ⊢ ( 𝑁 ∈ ℤ → ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) |
| 14 | divdir | ⊢ ( ( ( 2 · 𝑁 ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( ( 2 · 𝑁 ) + 1 ) / 2 ) = ( ( ( 2 · 𝑁 ) / 2 ) + ( 1 / 2 ) ) ) | |
| 15 | 10 11 13 14 | syl3anc | ⊢ ( 𝑁 ∈ ℤ → ( ( ( 2 · 𝑁 ) + 1 ) / 2 ) = ( ( ( 2 · 𝑁 ) / 2 ) + ( 1 / 2 ) ) ) |
| 16 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 17 | 2cnd | ⊢ ( 𝑁 ∈ ℤ → 2 ∈ ℂ ) | |
| 18 | 2ne0 | ⊢ 2 ≠ 0 | |
| 19 | 18 | a1i | ⊢ ( 𝑁 ∈ ℤ → 2 ≠ 0 ) |
| 20 | 16 17 19 | divcan3d | ⊢ ( 𝑁 ∈ ℤ → ( ( 2 · 𝑁 ) / 2 ) = 𝑁 ) |
| 21 | 20 | oveq1d | ⊢ ( 𝑁 ∈ ℤ → ( ( ( 2 · 𝑁 ) / 2 ) + ( 1 / 2 ) ) = ( 𝑁 + ( 1 / 2 ) ) ) |
| 22 | 15 21 | eqtrd | ⊢ ( 𝑁 ∈ ℤ → ( ( ( 2 · 𝑁 ) + 1 ) / 2 ) = ( 𝑁 + ( 1 / 2 ) ) ) |
| 23 | 22 | breq2d | ⊢ ( 𝑁 ∈ ℤ → ( 0 ≤ ( ( ( 2 · 𝑁 ) + 1 ) / 2 ) ↔ 0 ≤ ( 𝑁 + ( 1 / 2 ) ) ) ) |
| 24 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 25 | halfre | ⊢ ( 1 / 2 ) ∈ ℝ | |
| 26 | 25 | a1i | ⊢ ( 𝑁 ∈ ℤ → ( 1 / 2 ) ∈ ℝ ) |
| 27 | 24 26 | readdcld | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 + ( 1 / 2 ) ) ∈ ℝ ) |
| 28 | halfge0 | ⊢ 0 ≤ ( 1 / 2 ) | |
| 29 | 24 26 | addge01d | ⊢ ( 𝑁 ∈ ℤ → ( 0 ≤ ( 1 / 2 ) ↔ 𝑁 ≤ ( 𝑁 + ( 1 / 2 ) ) ) ) |
| 30 | 28 29 | mpbii | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ≤ ( 𝑁 + ( 1 / 2 ) ) ) |
| 31 | 1red | ⊢ ( 𝑁 ∈ ℤ → 1 ∈ ℝ ) | |
| 32 | halflt1 | ⊢ ( 1 / 2 ) < 1 | |
| 33 | 32 | a1i | ⊢ ( 𝑁 ∈ ℤ → ( 1 / 2 ) < 1 ) |
| 34 | 26 31 24 33 | ltadd2dd | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 + ( 1 / 2 ) ) < ( 𝑁 + 1 ) ) |
| 35 | btwnzge0 | ⊢ ( ( ( ( 𝑁 + ( 1 / 2 ) ) ∈ ℝ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 ≤ ( 𝑁 + ( 1 / 2 ) ) ∧ ( 𝑁 + ( 1 / 2 ) ) < ( 𝑁 + 1 ) ) ) → ( 0 ≤ ( 𝑁 + ( 1 / 2 ) ) ↔ 0 ≤ 𝑁 ) ) | |
| 36 | 27 3 30 34 35 | syl22anc | ⊢ ( 𝑁 ∈ ℤ → ( 0 ≤ ( 𝑁 + ( 1 / 2 ) ) ↔ 0 ≤ 𝑁 ) ) |
| 37 | 9 23 36 | 3bitrd | ⊢ ( 𝑁 ∈ ℤ → ( 0 ≤ ( ( 2 · 𝑁 ) + 1 ) ↔ 0 ≤ 𝑁 ) ) |