This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An orthocomplement has trivial intersection with the original subspace. (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ocv2ss.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | |
| ocvin.l | ⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) | ||
| ocvin.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| Assertion | ocvin | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿 ) → ( 𝑆 ∩ ( ⊥ ‘ 𝑆 ) ) = { 0 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocv2ss.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | |
| 2 | ocvin.l | ⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) | |
| 3 | ocvin.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 5 | eqid | ⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) | |
| 6 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 7 | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | |
| 8 | 4 5 6 7 1 | ocvi | ⊢ ( ( 𝑥 ∈ ( ⊥ ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 9 | 8 | ancoms | ⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘ 𝑆 ) ) → ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 10 | 9 | adantl | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘ 𝑆 ) ) ) → ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 11 | simpll | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘ 𝑆 ) ) ) → 𝑊 ∈ PreHil ) | |
| 12 | 4 2 | lssel | ⊢ ( ( 𝑆 ∈ 𝐿 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
| 13 | 12 | ad2ant2lr | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘ 𝑆 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
| 14 | 6 5 4 7 3 | ipeq0 | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ 𝑥 = 0 ) ) |
| 15 | 11 13 14 | syl2anc | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘ 𝑆 ) ) ) → ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ 𝑥 = 0 ) ) |
| 16 | 10 15 | mpbid | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘ 𝑆 ) ) ) → 𝑥 = 0 ) |
| 17 | 16 | ex | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿 ) → ( ( 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘ 𝑆 ) ) → 𝑥 = 0 ) ) |
| 18 | elin | ⊢ ( 𝑥 ∈ ( 𝑆 ∩ ( ⊥ ‘ 𝑆 ) ) ↔ ( 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘ 𝑆 ) ) ) | |
| 19 | velsn | ⊢ ( 𝑥 ∈ { 0 } ↔ 𝑥 = 0 ) | |
| 20 | 17 18 19 | 3imtr4g | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿 ) → ( 𝑥 ∈ ( 𝑆 ∩ ( ⊥ ‘ 𝑆 ) ) → 𝑥 ∈ { 0 } ) ) |
| 21 | 20 | ssrdv | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿 ) → ( 𝑆 ∩ ( ⊥ ‘ 𝑆 ) ) ⊆ { 0 } ) |
| 22 | phllmod | ⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) | |
| 23 | 4 2 | lssss | ⊢ ( 𝑆 ∈ 𝐿 → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
| 24 | 4 1 2 | ocvlss | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ ( Base ‘ 𝑊 ) ) → ( ⊥ ‘ 𝑆 ) ∈ 𝐿 ) |
| 25 | 23 24 | sylan2 | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿 ) → ( ⊥ ‘ 𝑆 ) ∈ 𝐿 ) |
| 26 | 2 | lssincl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑆 ∈ 𝐿 ∧ ( ⊥ ‘ 𝑆 ) ∈ 𝐿 ) → ( 𝑆 ∩ ( ⊥ ‘ 𝑆 ) ) ∈ 𝐿 ) |
| 27 | 22 26 | syl3an1 | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿 ∧ ( ⊥ ‘ 𝑆 ) ∈ 𝐿 ) → ( 𝑆 ∩ ( ⊥ ‘ 𝑆 ) ) ∈ 𝐿 ) |
| 28 | 25 27 | mpd3an3 | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿 ) → ( 𝑆 ∩ ( ⊥ ‘ 𝑆 ) ) ∈ 𝐿 ) |
| 29 | 3 2 | lss0ss | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑆 ∩ ( ⊥ ‘ 𝑆 ) ) ∈ 𝐿 ) → { 0 } ⊆ ( 𝑆 ∩ ( ⊥ ‘ 𝑆 ) ) ) |
| 30 | 22 28 29 | syl2an2r | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿 ) → { 0 } ⊆ ( 𝑆 ∩ ( ⊥ ‘ 𝑆 ) ) ) |
| 31 | 21 30 | eqssd | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿 ) → ( 𝑆 ∩ ( ⊥ ‘ 𝑆 ) ) = { 0 } ) |