This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to say that S and T are orthogonal subspaces. (Contributed by Mario Carneiro, 23-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ocvlsp.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| ocvlsp.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | ||
| Assertion | ocvsscon | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑉 ) → ( 𝑆 ⊆ ( ⊥ ‘ 𝑇 ) ↔ 𝑇 ⊆ ( ⊥ ‘ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocvlsp.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | ocvlsp.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | |
| 3 | 1 2 | ocvocv | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ⊆ 𝑉 ) → 𝑇 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑇 ) ) ) |
| 4 | 3 | 3adant2 | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑉 ) → 𝑇 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑇 ) ) ) |
| 5 | 2 | ocv2ss | ⊢ ( 𝑆 ⊆ ( ⊥ ‘ 𝑇 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑇 ) ) ⊆ ( ⊥ ‘ 𝑆 ) ) |
| 6 | sstr2 | ⊢ ( 𝑇 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑇 ) ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝑇 ) ) ⊆ ( ⊥ ‘ 𝑆 ) → 𝑇 ⊆ ( ⊥ ‘ 𝑆 ) ) ) | |
| 7 | 4 5 6 | syl2im | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑉 ) → ( 𝑆 ⊆ ( ⊥ ‘ 𝑇 ) → 𝑇 ⊆ ( ⊥ ‘ 𝑆 ) ) ) |
| 8 | 1 2 | ocvocv | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) |
| 9 | 8 | 3adant3 | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑉 ) → 𝑆 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) |
| 10 | 2 | ocv2ss | ⊢ ( 𝑇 ⊆ ( ⊥ ‘ 𝑆 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ⊆ ( ⊥ ‘ 𝑇 ) ) |
| 11 | sstr2 | ⊢ ( 𝑆 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ⊆ ( ⊥ ‘ 𝑇 ) → 𝑆 ⊆ ( ⊥ ‘ 𝑇 ) ) ) | |
| 12 | 9 10 11 | syl2im | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑉 ) → ( 𝑇 ⊆ ( ⊥ ‘ 𝑆 ) → 𝑆 ⊆ ( ⊥ ‘ 𝑇 ) ) ) |
| 13 | 7 12 | impbid | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑉 ) → ( 𝑆 ⊆ ( ⊥ ‘ 𝑇 ) ↔ 𝑇 ⊆ ( ⊥ ‘ 𝑆 ) ) ) |