This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An orthocomplement has trivial intersection with the original subspace. (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ocv2ss.o | |- ._|_ = ( ocv ` W ) |
|
| ocvin.l | |- L = ( LSubSp ` W ) |
||
| ocvin.z | |- .0. = ( 0g ` W ) |
||
| Assertion | ocvin | |- ( ( W e. PreHil /\ S e. L ) -> ( S i^i ( ._|_ ` S ) ) = { .0. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocv2ss.o | |- ._|_ = ( ocv ` W ) |
|
| 2 | ocvin.l | |- L = ( LSubSp ` W ) |
|
| 3 | ocvin.z | |- .0. = ( 0g ` W ) |
|
| 4 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 5 | eqid | |- ( .i ` W ) = ( .i ` W ) |
|
| 6 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 7 | eqid | |- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
|
| 8 | 4 5 6 7 1 | ocvi | |- ( ( x e. ( ._|_ ` S ) /\ x e. S ) -> ( x ( .i ` W ) x ) = ( 0g ` ( Scalar ` W ) ) ) |
| 9 | 8 | ancoms | |- ( ( x e. S /\ x e. ( ._|_ ` S ) ) -> ( x ( .i ` W ) x ) = ( 0g ` ( Scalar ` W ) ) ) |
| 10 | 9 | adantl | |- ( ( ( W e. PreHil /\ S e. L ) /\ ( x e. S /\ x e. ( ._|_ ` S ) ) ) -> ( x ( .i ` W ) x ) = ( 0g ` ( Scalar ` W ) ) ) |
| 11 | simpll | |- ( ( ( W e. PreHil /\ S e. L ) /\ ( x e. S /\ x e. ( ._|_ ` S ) ) ) -> W e. PreHil ) |
|
| 12 | 4 2 | lssel | |- ( ( S e. L /\ x e. S ) -> x e. ( Base ` W ) ) |
| 13 | 12 | ad2ant2lr | |- ( ( ( W e. PreHil /\ S e. L ) /\ ( x e. S /\ x e. ( ._|_ ` S ) ) ) -> x e. ( Base ` W ) ) |
| 14 | 6 5 4 7 3 | ipeq0 | |- ( ( W e. PreHil /\ x e. ( Base ` W ) ) -> ( ( x ( .i ` W ) x ) = ( 0g ` ( Scalar ` W ) ) <-> x = .0. ) ) |
| 15 | 11 13 14 | syl2anc | |- ( ( ( W e. PreHil /\ S e. L ) /\ ( x e. S /\ x e. ( ._|_ ` S ) ) ) -> ( ( x ( .i ` W ) x ) = ( 0g ` ( Scalar ` W ) ) <-> x = .0. ) ) |
| 16 | 10 15 | mpbid | |- ( ( ( W e. PreHil /\ S e. L ) /\ ( x e. S /\ x e. ( ._|_ ` S ) ) ) -> x = .0. ) |
| 17 | 16 | ex | |- ( ( W e. PreHil /\ S e. L ) -> ( ( x e. S /\ x e. ( ._|_ ` S ) ) -> x = .0. ) ) |
| 18 | elin | |- ( x e. ( S i^i ( ._|_ ` S ) ) <-> ( x e. S /\ x e. ( ._|_ ` S ) ) ) |
|
| 19 | velsn | |- ( x e. { .0. } <-> x = .0. ) |
|
| 20 | 17 18 19 | 3imtr4g | |- ( ( W e. PreHil /\ S e. L ) -> ( x e. ( S i^i ( ._|_ ` S ) ) -> x e. { .0. } ) ) |
| 21 | 20 | ssrdv | |- ( ( W e. PreHil /\ S e. L ) -> ( S i^i ( ._|_ ` S ) ) C_ { .0. } ) |
| 22 | phllmod | |- ( W e. PreHil -> W e. LMod ) |
|
| 23 | 4 2 | lssss | |- ( S e. L -> S C_ ( Base ` W ) ) |
| 24 | 4 1 2 | ocvlss | |- ( ( W e. PreHil /\ S C_ ( Base ` W ) ) -> ( ._|_ ` S ) e. L ) |
| 25 | 23 24 | sylan2 | |- ( ( W e. PreHil /\ S e. L ) -> ( ._|_ ` S ) e. L ) |
| 26 | 2 | lssincl | |- ( ( W e. LMod /\ S e. L /\ ( ._|_ ` S ) e. L ) -> ( S i^i ( ._|_ ` S ) ) e. L ) |
| 27 | 22 26 | syl3an1 | |- ( ( W e. PreHil /\ S e. L /\ ( ._|_ ` S ) e. L ) -> ( S i^i ( ._|_ ` S ) ) e. L ) |
| 28 | 25 27 | mpd3an3 | |- ( ( W e. PreHil /\ S e. L ) -> ( S i^i ( ._|_ ` S ) ) e. L ) |
| 29 | 3 2 | lss0ss | |- ( ( W e. LMod /\ ( S i^i ( ._|_ ` S ) ) e. L ) -> { .0. } C_ ( S i^i ( ._|_ ` S ) ) ) |
| 30 | 22 28 29 | syl2an2r | |- ( ( W e. PreHil /\ S e. L ) -> { .0. } C_ ( S i^i ( ._|_ ` S ) ) ) |
| 31 | 21 30 | eqssd | |- ( ( W e. PreHil /\ S e. L ) -> ( S i^i ( ._|_ ` S ) ) = { .0. } ) |