This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of two subspaces is a subspace. (Contributed by NM, 7-Mar-2014) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lssintcl.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| Assertion | lssincl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ( 𝑇 ∩ 𝑈 ) ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssintcl.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 2 | intprg | ⊢ ( ( 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ∩ { 𝑇 , 𝑈 } = ( 𝑇 ∩ 𝑈 ) ) | |
| 3 | 2 | 3adant1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ∩ { 𝑇 , 𝑈 } = ( 𝑇 ∩ 𝑈 ) ) |
| 4 | simp1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → 𝑊 ∈ LMod ) | |
| 5 | prssi | ⊢ ( ( 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → { 𝑇 , 𝑈 } ⊆ 𝑆 ) | |
| 6 | 5 | 3adant1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → { 𝑇 , 𝑈 } ⊆ 𝑆 ) |
| 7 | prnzg | ⊢ ( 𝑇 ∈ 𝑆 → { 𝑇 , 𝑈 } ≠ ∅ ) | |
| 8 | 7 | 3ad2ant2 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → { 𝑇 , 𝑈 } ≠ ∅ ) |
| 9 | 1 | lssintcl | ⊢ ( ( 𝑊 ∈ LMod ∧ { 𝑇 , 𝑈 } ⊆ 𝑆 ∧ { 𝑇 , 𝑈 } ≠ ∅ ) → ∩ { 𝑇 , 𝑈 } ∈ 𝑆 ) |
| 10 | 4 6 8 9 | syl3anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ∩ { 𝑇 , 𝑈 } ∈ 𝑆 ) |
| 11 | 3 10 | eqeltrrd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ( 𝑇 ∩ 𝑈 ) ∈ 𝑆 ) |