This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Hilbert subspace is closed iff it is complete. A complete subspace is one in which every Cauchy sequence of vectors in the subspace converges to a member of the subspace (Definition of complete subspace in Beran p. 96). Remark 3.12 of Beran p. 107. (Contributed by NM, 24-Dec-2001) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isch3 | ⊢ ( 𝐻 ∈ Cℋ ↔ ( 𝐻 ∈ Sℋ ∧ ∀ 𝑓 ∈ Cauchy ( 𝑓 : ℕ ⟶ 𝐻 → ∃ 𝑥 ∈ 𝐻 𝑓 ⇝𝑣 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isch2 | ⊢ ( 𝐻 ∈ Cℋ ↔ ( 𝐻 ∈ Sℋ ∧ ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ) ) | |
| 2 | ax-hcompl | ⊢ ( 𝑓 ∈ Cauchy → ∃ 𝑥 ∈ ℋ 𝑓 ⇝𝑣 𝑥 ) | |
| 3 | rexex | ⊢ ( ∃ 𝑥 ∈ ℋ 𝑓 ⇝𝑣 𝑥 → ∃ 𝑥 𝑓 ⇝𝑣 𝑥 ) | |
| 4 | 2 3 | syl | ⊢ ( 𝑓 ∈ Cauchy → ∃ 𝑥 𝑓 ⇝𝑣 𝑥 ) |
| 5 | 19.29 | ⊢ ( ( ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ∧ ∃ 𝑥 𝑓 ⇝𝑣 𝑥 ) → ∃ 𝑥 ( ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ∧ 𝑓 ⇝𝑣 𝑥 ) ) | |
| 6 | 4 5 | sylan2 | ⊢ ( ( ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ∧ 𝑓 ∈ Cauchy ) → ∃ 𝑥 ( ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ∧ 𝑓 ⇝𝑣 𝑥 ) ) |
| 7 | id | ⊢ ( ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) → ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ) | |
| 8 | 7 | imp | ⊢ ( ( ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ∧ ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) ) → 𝑥 ∈ 𝐻 ) |
| 9 | 8 | an12s | ⊢ ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ ( ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ∧ 𝑓 ⇝𝑣 𝑥 ) ) → 𝑥 ∈ 𝐻 ) |
| 10 | simprr | ⊢ ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ ( ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ∧ 𝑓 ⇝𝑣 𝑥 ) ) → 𝑓 ⇝𝑣 𝑥 ) | |
| 11 | 9 10 | jca | ⊢ ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ ( ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ∧ 𝑓 ⇝𝑣 𝑥 ) ) → ( 𝑥 ∈ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) ) |
| 12 | 11 | ex | ⊢ ( 𝑓 : ℕ ⟶ 𝐻 → ( ( ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → ( 𝑥 ∈ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) ) ) |
| 13 | 12 | eximdv | ⊢ ( 𝑓 : ℕ ⟶ 𝐻 → ( ∃ 𝑥 ( ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → ∃ 𝑥 ( 𝑥 ∈ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) ) ) |
| 14 | 13 | com12 | ⊢ ( ∃ 𝑥 ( ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → ( 𝑓 : ℕ ⟶ 𝐻 → ∃ 𝑥 ( 𝑥 ∈ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) ) ) |
| 15 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐻 𝑓 ⇝𝑣 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) ) | |
| 16 | 14 15 | imbitrrdi | ⊢ ( ∃ 𝑥 ( ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → ( 𝑓 : ℕ ⟶ 𝐻 → ∃ 𝑥 ∈ 𝐻 𝑓 ⇝𝑣 𝑥 ) ) |
| 17 | 6 16 | syl | ⊢ ( ( ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ∧ 𝑓 ∈ Cauchy ) → ( 𝑓 : ℕ ⟶ 𝐻 → ∃ 𝑥 ∈ 𝐻 𝑓 ⇝𝑣 𝑥 ) ) |
| 18 | 17 | ex | ⊢ ( ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) → ( 𝑓 ∈ Cauchy → ( 𝑓 : ℕ ⟶ 𝐻 → ∃ 𝑥 ∈ 𝐻 𝑓 ⇝𝑣 𝑥 ) ) ) |
| 19 | nfv | ⊢ Ⅎ 𝑥 𝑓 ∈ Cauchy | |
| 20 | nfv | ⊢ Ⅎ 𝑥 𝑓 : ℕ ⟶ 𝐻 | |
| 21 | nfre1 | ⊢ Ⅎ 𝑥 ∃ 𝑥 ∈ 𝐻 𝑓 ⇝𝑣 𝑥 | |
| 22 | 20 21 | nfim | ⊢ Ⅎ 𝑥 ( 𝑓 : ℕ ⟶ 𝐻 → ∃ 𝑥 ∈ 𝐻 𝑓 ⇝𝑣 𝑥 ) |
| 23 | 19 22 | nfim | ⊢ Ⅎ 𝑥 ( 𝑓 ∈ Cauchy → ( 𝑓 : ℕ ⟶ 𝐻 → ∃ 𝑥 ∈ 𝐻 𝑓 ⇝𝑣 𝑥 ) ) |
| 24 | bi2.04 | ⊢ ( ( 𝑓 ∈ Cauchy → ( 𝑓 : ℕ ⟶ 𝐻 → ∃ 𝑥 ∈ 𝐻 𝑓 ⇝𝑣 𝑥 ) ) ↔ ( 𝑓 : ℕ ⟶ 𝐻 → ( 𝑓 ∈ Cauchy → ∃ 𝑥 ∈ 𝐻 𝑓 ⇝𝑣 𝑥 ) ) ) | |
| 25 | hlimcaui | ⊢ ( 𝑓 ⇝𝑣 𝑥 → 𝑓 ∈ Cauchy ) | |
| 26 | 25 | imim1i | ⊢ ( ( 𝑓 ∈ Cauchy → ∃ 𝑥 ∈ 𝐻 𝑓 ⇝𝑣 𝑥 ) → ( 𝑓 ⇝𝑣 𝑥 → ∃ 𝑥 ∈ 𝐻 𝑓 ⇝𝑣 𝑥 ) ) |
| 27 | rexex | ⊢ ( ∃ 𝑥 ∈ 𝐻 𝑓 ⇝𝑣 𝑥 → ∃ 𝑥 𝑓 ⇝𝑣 𝑥 ) | |
| 28 | hlimeui | ⊢ ( ∃ 𝑥 𝑓 ⇝𝑣 𝑥 ↔ ∃! 𝑥 𝑓 ⇝𝑣 𝑥 ) | |
| 29 | 27 28 | sylib | ⊢ ( ∃ 𝑥 ∈ 𝐻 𝑓 ⇝𝑣 𝑥 → ∃! 𝑥 𝑓 ⇝𝑣 𝑥 ) |
| 30 | exancom | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) ↔ ∃ 𝑥 ( 𝑓 ⇝𝑣 𝑥 ∧ 𝑥 ∈ 𝐻 ) ) | |
| 31 | 15 30 | sylbb | ⊢ ( ∃ 𝑥 ∈ 𝐻 𝑓 ⇝𝑣 𝑥 → ∃ 𝑥 ( 𝑓 ⇝𝑣 𝑥 ∧ 𝑥 ∈ 𝐻 ) ) |
| 32 | eupick | ⊢ ( ( ∃! 𝑥 𝑓 ⇝𝑣 𝑥 ∧ ∃ 𝑥 ( 𝑓 ⇝𝑣 𝑥 ∧ 𝑥 ∈ 𝐻 ) ) → ( 𝑓 ⇝𝑣 𝑥 → 𝑥 ∈ 𝐻 ) ) | |
| 33 | 29 31 32 | syl2anc | ⊢ ( ∃ 𝑥 ∈ 𝐻 𝑓 ⇝𝑣 𝑥 → ( 𝑓 ⇝𝑣 𝑥 → 𝑥 ∈ 𝐻 ) ) |
| 34 | 26 33 | syli | ⊢ ( ( 𝑓 ∈ Cauchy → ∃ 𝑥 ∈ 𝐻 𝑓 ⇝𝑣 𝑥 ) → ( 𝑓 ⇝𝑣 𝑥 → 𝑥 ∈ 𝐻 ) ) |
| 35 | 34 | imim2i | ⊢ ( ( 𝑓 : ℕ ⟶ 𝐻 → ( 𝑓 ∈ Cauchy → ∃ 𝑥 ∈ 𝐻 𝑓 ⇝𝑣 𝑥 ) ) → ( 𝑓 : ℕ ⟶ 𝐻 → ( 𝑓 ⇝𝑣 𝑥 → 𝑥 ∈ 𝐻 ) ) ) |
| 36 | 24 35 | sylbi | ⊢ ( ( 𝑓 ∈ Cauchy → ( 𝑓 : ℕ ⟶ 𝐻 → ∃ 𝑥 ∈ 𝐻 𝑓 ⇝𝑣 𝑥 ) ) → ( 𝑓 : ℕ ⟶ 𝐻 → ( 𝑓 ⇝𝑣 𝑥 → 𝑥 ∈ 𝐻 ) ) ) |
| 37 | 36 | impd | ⊢ ( ( 𝑓 ∈ Cauchy → ( 𝑓 : ℕ ⟶ 𝐻 → ∃ 𝑥 ∈ 𝐻 𝑓 ⇝𝑣 𝑥 ) ) → ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ) |
| 38 | 23 37 | alrimi | ⊢ ( ( 𝑓 ∈ Cauchy → ( 𝑓 : ℕ ⟶ 𝐻 → ∃ 𝑥 ∈ 𝐻 𝑓 ⇝𝑣 𝑥 ) ) → ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ) |
| 39 | 18 38 | impbii | ⊢ ( ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ↔ ( 𝑓 ∈ Cauchy → ( 𝑓 : ℕ ⟶ 𝐻 → ∃ 𝑥 ∈ 𝐻 𝑓 ⇝𝑣 𝑥 ) ) ) |
| 40 | 39 | albii | ⊢ ( ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ↔ ∀ 𝑓 ( 𝑓 ∈ Cauchy → ( 𝑓 : ℕ ⟶ 𝐻 → ∃ 𝑥 ∈ 𝐻 𝑓 ⇝𝑣 𝑥 ) ) ) |
| 41 | df-ral | ⊢ ( ∀ 𝑓 ∈ Cauchy ( 𝑓 : ℕ ⟶ 𝐻 → ∃ 𝑥 ∈ 𝐻 𝑓 ⇝𝑣 𝑥 ) ↔ ∀ 𝑓 ( 𝑓 ∈ Cauchy → ( 𝑓 : ℕ ⟶ 𝐻 → ∃ 𝑥 ∈ 𝐻 𝑓 ⇝𝑣 𝑥 ) ) ) | |
| 42 | 40 41 | bitr4i | ⊢ ( ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ↔ ∀ 𝑓 ∈ Cauchy ( 𝑓 : ℕ ⟶ 𝐻 → ∃ 𝑥 ∈ 𝐻 𝑓 ⇝𝑣 𝑥 ) ) |
| 43 | 42 | anbi2i | ⊢ ( ( 𝐻 ∈ Sℋ ∧ ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ) ↔ ( 𝐻 ∈ Sℋ ∧ ∀ 𝑓 ∈ Cauchy ( 𝑓 : ℕ ⟶ 𝐻 → ∃ 𝑥 ∈ 𝐻 𝑓 ⇝𝑣 𝑥 ) ) ) |
| 44 | 1 43 | bitri | ⊢ ( 𝐻 ∈ Cℋ ↔ ( 𝐻 ∈ Sℋ ∧ ∀ 𝑓 ∈ Cauchy ( 𝑓 : ℕ ⟶ 𝐻 → ∃ 𝑥 ∈ 𝐻 𝑓 ⇝𝑣 𝑥 ) ) ) |