This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property of ordinal addition. Proposition 8.4 of TakeutiZaring p. 58. (Contributed by NM, 5-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oaordi | |- ( ( B e. On /\ C e. On ) -> ( A e. B -> ( C +o A ) e. ( C +o B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onelon | |- ( ( B e. On /\ A e. B ) -> A e. On ) |
|
| 2 | 1 | adantll | |- ( ( ( C e. On /\ B e. On ) /\ A e. B ) -> A e. On ) |
| 3 | eloni | |- ( B e. On -> Ord B ) |
|
| 4 | ordsucss | |- ( Ord B -> ( A e. B -> suc A C_ B ) ) |
|
| 5 | 3 4 | syl | |- ( B e. On -> ( A e. B -> suc A C_ B ) ) |
| 6 | 5 | ad2antlr | |- ( ( ( C e. On /\ B e. On ) /\ A e. On ) -> ( A e. B -> suc A C_ B ) ) |
| 7 | onsucb | |- ( A e. On <-> suc A e. On ) |
|
| 8 | oveq2 | |- ( x = suc A -> ( C +o x ) = ( C +o suc A ) ) |
|
| 9 | 8 | sseq2d | |- ( x = suc A -> ( ( C +o suc A ) C_ ( C +o x ) <-> ( C +o suc A ) C_ ( C +o suc A ) ) ) |
| 10 | 9 | imbi2d | |- ( x = suc A -> ( ( C e. On -> ( C +o suc A ) C_ ( C +o x ) ) <-> ( C e. On -> ( C +o suc A ) C_ ( C +o suc A ) ) ) ) |
| 11 | oveq2 | |- ( x = y -> ( C +o x ) = ( C +o y ) ) |
|
| 12 | 11 | sseq2d | |- ( x = y -> ( ( C +o suc A ) C_ ( C +o x ) <-> ( C +o suc A ) C_ ( C +o y ) ) ) |
| 13 | 12 | imbi2d | |- ( x = y -> ( ( C e. On -> ( C +o suc A ) C_ ( C +o x ) ) <-> ( C e. On -> ( C +o suc A ) C_ ( C +o y ) ) ) ) |
| 14 | oveq2 | |- ( x = suc y -> ( C +o x ) = ( C +o suc y ) ) |
|
| 15 | 14 | sseq2d | |- ( x = suc y -> ( ( C +o suc A ) C_ ( C +o x ) <-> ( C +o suc A ) C_ ( C +o suc y ) ) ) |
| 16 | 15 | imbi2d | |- ( x = suc y -> ( ( C e. On -> ( C +o suc A ) C_ ( C +o x ) ) <-> ( C e. On -> ( C +o suc A ) C_ ( C +o suc y ) ) ) ) |
| 17 | oveq2 | |- ( x = B -> ( C +o x ) = ( C +o B ) ) |
|
| 18 | 17 | sseq2d | |- ( x = B -> ( ( C +o suc A ) C_ ( C +o x ) <-> ( C +o suc A ) C_ ( C +o B ) ) ) |
| 19 | 18 | imbi2d | |- ( x = B -> ( ( C e. On -> ( C +o suc A ) C_ ( C +o x ) ) <-> ( C e. On -> ( C +o suc A ) C_ ( C +o B ) ) ) ) |
| 20 | ssid | |- ( C +o suc A ) C_ ( C +o suc A ) |
|
| 21 | 20 | 2a1i | |- ( suc A e. On -> ( C e. On -> ( C +o suc A ) C_ ( C +o suc A ) ) ) |
| 22 | sssucid | |- ( C +o y ) C_ suc ( C +o y ) |
|
| 23 | sstr2 | |- ( ( C +o suc A ) C_ ( C +o y ) -> ( ( C +o y ) C_ suc ( C +o y ) -> ( C +o suc A ) C_ suc ( C +o y ) ) ) |
|
| 24 | 22 23 | mpi | |- ( ( C +o suc A ) C_ ( C +o y ) -> ( C +o suc A ) C_ suc ( C +o y ) ) |
| 25 | oasuc | |- ( ( C e. On /\ y e. On ) -> ( C +o suc y ) = suc ( C +o y ) ) |
|
| 26 | 25 | ancoms | |- ( ( y e. On /\ C e. On ) -> ( C +o suc y ) = suc ( C +o y ) ) |
| 27 | 26 | sseq2d | |- ( ( y e. On /\ C e. On ) -> ( ( C +o suc A ) C_ ( C +o suc y ) <-> ( C +o suc A ) C_ suc ( C +o y ) ) ) |
| 28 | 24 27 | imbitrrid | |- ( ( y e. On /\ C e. On ) -> ( ( C +o suc A ) C_ ( C +o y ) -> ( C +o suc A ) C_ ( C +o suc y ) ) ) |
| 29 | 28 | ex | |- ( y e. On -> ( C e. On -> ( ( C +o suc A ) C_ ( C +o y ) -> ( C +o suc A ) C_ ( C +o suc y ) ) ) ) |
| 30 | 29 | ad2antrr | |- ( ( ( y e. On /\ suc A e. On ) /\ suc A C_ y ) -> ( C e. On -> ( ( C +o suc A ) C_ ( C +o y ) -> ( C +o suc A ) C_ ( C +o suc y ) ) ) ) |
| 31 | 30 | a2d | |- ( ( ( y e. On /\ suc A e. On ) /\ suc A C_ y ) -> ( ( C e. On -> ( C +o suc A ) C_ ( C +o y ) ) -> ( C e. On -> ( C +o suc A ) C_ ( C +o suc y ) ) ) ) |
| 32 | sucssel | |- ( A e. On -> ( suc A C_ x -> A e. x ) ) |
|
| 33 | 7 32 | sylbir | |- ( suc A e. On -> ( suc A C_ x -> A e. x ) ) |
| 34 | limsuc | |- ( Lim x -> ( A e. x <-> suc A e. x ) ) |
|
| 35 | 34 | biimpd | |- ( Lim x -> ( A e. x -> suc A e. x ) ) |
| 36 | 33 35 | sylan9r | |- ( ( Lim x /\ suc A e. On ) -> ( suc A C_ x -> suc A e. x ) ) |
| 37 | 36 | imp | |- ( ( ( Lim x /\ suc A e. On ) /\ suc A C_ x ) -> suc A e. x ) |
| 38 | oveq2 | |- ( y = suc A -> ( C +o y ) = ( C +o suc A ) ) |
|
| 39 | 38 | ssiun2s | |- ( suc A e. x -> ( C +o suc A ) C_ U_ y e. x ( C +o y ) ) |
| 40 | 37 39 | syl | |- ( ( ( Lim x /\ suc A e. On ) /\ suc A C_ x ) -> ( C +o suc A ) C_ U_ y e. x ( C +o y ) ) |
| 41 | 40 | adantr | |- ( ( ( ( Lim x /\ suc A e. On ) /\ suc A C_ x ) /\ C e. On ) -> ( C +o suc A ) C_ U_ y e. x ( C +o y ) ) |
| 42 | vex | |- x e. _V |
|
| 43 | oalim | |- ( ( C e. On /\ ( x e. _V /\ Lim x ) ) -> ( C +o x ) = U_ y e. x ( C +o y ) ) |
|
| 44 | 42 43 | mpanr1 | |- ( ( C e. On /\ Lim x ) -> ( C +o x ) = U_ y e. x ( C +o y ) ) |
| 45 | 44 | ancoms | |- ( ( Lim x /\ C e. On ) -> ( C +o x ) = U_ y e. x ( C +o y ) ) |
| 46 | 45 | adantlr | |- ( ( ( Lim x /\ suc A e. On ) /\ C e. On ) -> ( C +o x ) = U_ y e. x ( C +o y ) ) |
| 47 | 46 | adantlr | |- ( ( ( ( Lim x /\ suc A e. On ) /\ suc A C_ x ) /\ C e. On ) -> ( C +o x ) = U_ y e. x ( C +o y ) ) |
| 48 | 41 47 | sseqtrrd | |- ( ( ( ( Lim x /\ suc A e. On ) /\ suc A C_ x ) /\ C e. On ) -> ( C +o suc A ) C_ ( C +o x ) ) |
| 49 | 48 | ex | |- ( ( ( Lim x /\ suc A e. On ) /\ suc A C_ x ) -> ( C e. On -> ( C +o suc A ) C_ ( C +o x ) ) ) |
| 50 | 49 | a1d | |- ( ( ( Lim x /\ suc A e. On ) /\ suc A C_ x ) -> ( A. y e. x ( suc A C_ y -> ( C e. On -> ( C +o suc A ) C_ ( C +o y ) ) ) -> ( C e. On -> ( C +o suc A ) C_ ( C +o x ) ) ) ) |
| 51 | 10 13 16 19 21 31 50 | tfindsg | |- ( ( ( B e. On /\ suc A e. On ) /\ suc A C_ B ) -> ( C e. On -> ( C +o suc A ) C_ ( C +o B ) ) ) |
| 52 | 51 | exp31 | |- ( B e. On -> ( suc A e. On -> ( suc A C_ B -> ( C e. On -> ( C +o suc A ) C_ ( C +o B ) ) ) ) ) |
| 53 | 7 52 | biimtrid | |- ( B e. On -> ( A e. On -> ( suc A C_ B -> ( C e. On -> ( C +o suc A ) C_ ( C +o B ) ) ) ) ) |
| 54 | 53 | com4r | |- ( C e. On -> ( B e. On -> ( A e. On -> ( suc A C_ B -> ( C +o suc A ) C_ ( C +o B ) ) ) ) ) |
| 55 | 54 | imp31 | |- ( ( ( C e. On /\ B e. On ) /\ A e. On ) -> ( suc A C_ B -> ( C +o suc A ) C_ ( C +o B ) ) ) |
| 56 | oasuc | |- ( ( C e. On /\ A e. On ) -> ( C +o suc A ) = suc ( C +o A ) ) |
|
| 57 | 56 | sseq1d | |- ( ( C e. On /\ A e. On ) -> ( ( C +o suc A ) C_ ( C +o B ) <-> suc ( C +o A ) C_ ( C +o B ) ) ) |
| 58 | ovex | |- ( C +o A ) e. _V |
|
| 59 | sucssel | |- ( ( C +o A ) e. _V -> ( suc ( C +o A ) C_ ( C +o B ) -> ( C +o A ) e. ( C +o B ) ) ) |
|
| 60 | 58 59 | ax-mp | |- ( suc ( C +o A ) C_ ( C +o B ) -> ( C +o A ) e. ( C +o B ) ) |
| 61 | 57 60 | biimtrdi | |- ( ( C e. On /\ A e. On ) -> ( ( C +o suc A ) C_ ( C +o B ) -> ( C +o A ) e. ( C +o B ) ) ) |
| 62 | 61 | adantlr | |- ( ( ( C e. On /\ B e. On ) /\ A e. On ) -> ( ( C +o suc A ) C_ ( C +o B ) -> ( C +o A ) e. ( C +o B ) ) ) |
| 63 | 6 55 62 | 3syld | |- ( ( ( C e. On /\ B e. On ) /\ A e. On ) -> ( A e. B -> ( C +o A ) e. ( C +o B ) ) ) |
| 64 | 63 | imp | |- ( ( ( ( C e. On /\ B e. On ) /\ A e. On ) /\ A e. B ) -> ( C +o A ) e. ( C +o B ) ) |
| 65 | 64 | an32s | |- ( ( ( ( C e. On /\ B e. On ) /\ A e. B ) /\ A e. On ) -> ( C +o A ) e. ( C +o B ) ) |
| 66 | 2 65 | mpdan | |- ( ( ( C e. On /\ B e. On ) /\ A e. B ) -> ( C +o A ) e. ( C +o B ) ) |
| 67 | 66 | ex | |- ( ( C e. On /\ B e. On ) -> ( A e. B -> ( C +o A ) e. ( C +o B ) ) ) |
| 68 | 67 | ancoms | |- ( ( B e. On /\ C e. On ) -> ( A e. B -> ( C +o A ) e. ( C +o B ) ) ) |