This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A well-orderable set has choice sequences of every length. (Contributed by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | numacn | |- ( A e. V -> ( X e. dom card -> X e. AC_ A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | |- ( A e. V -> A e. _V ) |
|
| 2 | simpll | |- ( ( ( X e. dom card /\ A e. _V ) /\ f e. ( ( ~P X \ { (/) } ) ^m A ) ) -> X e. dom card ) |
|
| 3 | elmapi | |- ( f e. ( ( ~P X \ { (/) } ) ^m A ) -> f : A --> ( ~P X \ { (/) } ) ) |
|
| 4 | 3 | adantl | |- ( ( ( X e. dom card /\ A e. _V ) /\ f e. ( ( ~P X \ { (/) } ) ^m A ) ) -> f : A --> ( ~P X \ { (/) } ) ) |
| 5 | 4 | frnd | |- ( ( ( X e. dom card /\ A e. _V ) /\ f e. ( ( ~P X \ { (/) } ) ^m A ) ) -> ran f C_ ( ~P X \ { (/) } ) ) |
| 6 | 5 | difss2d | |- ( ( ( X e. dom card /\ A e. _V ) /\ f e. ( ( ~P X \ { (/) } ) ^m A ) ) -> ran f C_ ~P X ) |
| 7 | sspwuni | |- ( ran f C_ ~P X <-> U. ran f C_ X ) |
|
| 8 | 6 7 | sylib | |- ( ( ( X e. dom card /\ A e. _V ) /\ f e. ( ( ~P X \ { (/) } ) ^m A ) ) -> U. ran f C_ X ) |
| 9 | ssnum | |- ( ( X e. dom card /\ U. ran f C_ X ) -> U. ran f e. dom card ) |
|
| 10 | 2 8 9 | syl2anc | |- ( ( ( X e. dom card /\ A e. _V ) /\ f e. ( ( ~P X \ { (/) } ) ^m A ) ) -> U. ran f e. dom card ) |
| 11 | ssdifin0 | |- ( ran f C_ ( ~P X \ { (/) } ) -> ( ran f i^i { (/) } ) = (/) ) |
|
| 12 | 5 11 | syl | |- ( ( ( X e. dom card /\ A e. _V ) /\ f e. ( ( ~P X \ { (/) } ) ^m A ) ) -> ( ran f i^i { (/) } ) = (/) ) |
| 13 | disjsn | |- ( ( ran f i^i { (/) } ) = (/) <-> -. (/) e. ran f ) |
|
| 14 | 12 13 | sylib | |- ( ( ( X e. dom card /\ A e. _V ) /\ f e. ( ( ~P X \ { (/) } ) ^m A ) ) -> -. (/) e. ran f ) |
| 15 | ac5num | |- ( ( U. ran f e. dom card /\ -. (/) e. ran f ) -> E. h ( h : ran f --> U. ran f /\ A. y e. ran f ( h ` y ) e. y ) ) |
|
| 16 | 10 14 15 | syl2anc | |- ( ( ( X e. dom card /\ A e. _V ) /\ f e. ( ( ~P X \ { (/) } ) ^m A ) ) -> E. h ( h : ran f --> U. ran f /\ A. y e. ran f ( h ` y ) e. y ) ) |
| 17 | simpllr | |- ( ( ( ( X e. dom card /\ A e. _V ) /\ f e. ( ( ~P X \ { (/) } ) ^m A ) ) /\ ( h : ran f --> U. ran f /\ A. y e. ran f ( h ` y ) e. y ) ) -> A e. _V ) |
|
| 18 | 4 | ffnd | |- ( ( ( X e. dom card /\ A e. _V ) /\ f e. ( ( ~P X \ { (/) } ) ^m A ) ) -> f Fn A ) |
| 19 | fveq2 | |- ( y = ( f ` x ) -> ( h ` y ) = ( h ` ( f ` x ) ) ) |
|
| 20 | id | |- ( y = ( f ` x ) -> y = ( f ` x ) ) |
|
| 21 | 19 20 | eleq12d | |- ( y = ( f ` x ) -> ( ( h ` y ) e. y <-> ( h ` ( f ` x ) ) e. ( f ` x ) ) ) |
| 22 | 21 | ralrn | |- ( f Fn A -> ( A. y e. ran f ( h ` y ) e. y <-> A. x e. A ( h ` ( f ` x ) ) e. ( f ` x ) ) ) |
| 23 | 18 22 | syl | |- ( ( ( X e. dom card /\ A e. _V ) /\ f e. ( ( ~P X \ { (/) } ) ^m A ) ) -> ( A. y e. ran f ( h ` y ) e. y <-> A. x e. A ( h ` ( f ` x ) ) e. ( f ` x ) ) ) |
| 24 | 23 | biimpa | |- ( ( ( ( X e. dom card /\ A e. _V ) /\ f e. ( ( ~P X \ { (/) } ) ^m A ) ) /\ A. y e. ran f ( h ` y ) e. y ) -> A. x e. A ( h ` ( f ` x ) ) e. ( f ` x ) ) |
| 25 | 24 | adantrl | |- ( ( ( ( X e. dom card /\ A e. _V ) /\ f e. ( ( ~P X \ { (/) } ) ^m A ) ) /\ ( h : ran f --> U. ran f /\ A. y e. ran f ( h ` y ) e. y ) ) -> A. x e. A ( h ` ( f ` x ) ) e. ( f ` x ) ) |
| 26 | acnlem | |- ( ( A e. _V /\ A. x e. A ( h ` ( f ` x ) ) e. ( f ` x ) ) -> E. g A. x e. A ( g ` x ) e. ( f ` x ) ) |
|
| 27 | 17 25 26 | syl2anc | |- ( ( ( ( X e. dom card /\ A e. _V ) /\ f e. ( ( ~P X \ { (/) } ) ^m A ) ) /\ ( h : ran f --> U. ran f /\ A. y e. ran f ( h ` y ) e. y ) ) -> E. g A. x e. A ( g ` x ) e. ( f ` x ) ) |
| 28 | 16 27 | exlimddv | |- ( ( ( X e. dom card /\ A e. _V ) /\ f e. ( ( ~P X \ { (/) } ) ^m A ) ) -> E. g A. x e. A ( g ` x ) e. ( f ` x ) ) |
| 29 | 28 | ralrimiva | |- ( ( X e. dom card /\ A e. _V ) -> A. f e. ( ( ~P X \ { (/) } ) ^m A ) E. g A. x e. A ( g ` x ) e. ( f ` x ) ) |
| 30 | isacn | |- ( ( X e. dom card /\ A e. _V ) -> ( X e. AC_ A <-> A. f e. ( ( ~P X \ { (/) } ) ^m A ) E. g A. x e. A ( g ` x ) e. ( f ` x ) ) ) |
|
| 31 | 29 30 | mpbird | |- ( ( X e. dom card /\ A e. _V ) -> X e. AC_ A ) |
| 32 | 31 | expcom | |- ( A e. _V -> ( X e. dom card -> X e. AC_ A ) ) |
| 33 | 1 32 | syl | |- ( A e. V -> ( X e. dom card -> X e. AC_ A ) ) |