This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functionalized scalar multiplication in the ring module. (Contributed by Mario Carneiro, 6-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rlmscaf | ⊢ ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) ) = ( ·sf ‘ ( ringLMod ‘ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 3 | 1 2 | mgpbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 4 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 5 | 1 4 | mgpplusg | ⊢ ( .r ‘ 𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 6 | eqid | ⊢ ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) ) = ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) ) | |
| 7 | 3 5 6 | plusffval | ⊢ ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) |
| 8 | rlmbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 9 | rlmsca2 | ⊢ ( I ‘ 𝑅 ) = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 10 | baseid | ⊢ Base = Slot ( Base ‘ ndx ) | |
| 11 | 10 2 | strfvi | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( I ‘ 𝑅 ) ) |
| 12 | eqid | ⊢ ( ·sf ‘ ( ringLMod ‘ 𝑅 ) ) = ( ·sf ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 13 | rlmvsca | ⊢ ( .r ‘ 𝑅 ) = ( ·𝑠 ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 14 | 8 9 11 12 13 | scaffval | ⊢ ( ·sf ‘ ( ringLMod ‘ 𝑅 ) ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) |
| 15 | 7 14 | eqtr4i | ⊢ ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) ) = ( ·sf ‘ ( ringLMod ‘ 𝑅 ) ) |