This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalars in the ring module. (Contributed by Stefan O'Rear, 1-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rlmsca2 | ⊢ ( I ‘ 𝑅 ) = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvi | ⊢ ( 𝑅 ∈ V → ( I ‘ 𝑅 ) = 𝑅 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 3 | 2 | ressid | ⊢ ( 𝑅 ∈ V → ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) = 𝑅 ) |
| 4 | 1 3 | eqtr4d | ⊢ ( 𝑅 ∈ V → ( I ‘ 𝑅 ) = ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) |
| 5 | fvprc | ⊢ ( ¬ 𝑅 ∈ V → ( I ‘ 𝑅 ) = ∅ ) | |
| 6 | reldmress | ⊢ Rel dom ↾s | |
| 7 | 6 | ovprc1 | ⊢ ( ¬ 𝑅 ∈ V → ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) = ∅ ) |
| 8 | 5 7 | eqtr4d | ⊢ ( ¬ 𝑅 ∈ V → ( I ‘ 𝑅 ) = ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) |
| 9 | 4 8 | pm2.61i | ⊢ ( I ‘ 𝑅 ) = ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) |
| 10 | rlmval | ⊢ ( ringLMod ‘ 𝑅 ) = ( ( subringAlg ‘ 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) | |
| 11 | 10 | a1i | ⊢ ( ⊤ → ( ringLMod ‘ 𝑅 ) = ( ( subringAlg ‘ 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) ) |
| 12 | ssidd | ⊢ ( ⊤ → ( Base ‘ 𝑅 ) ⊆ ( Base ‘ 𝑅 ) ) | |
| 13 | 11 12 | srasca | ⊢ ( ⊤ → ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) |
| 14 | 13 | mptru | ⊢ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) |
| 15 | 9 14 | eqtri | ⊢ ( I ‘ 𝑅 ) = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) |