This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the predicate " R is a topological ring". (Contributed by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | istrg.1 | ⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) | |
| Assertion | istrg | ⊢ ( 𝑅 ∈ TopRing ↔ ( 𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ TopMnd ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istrg.1 | ⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) | |
| 2 | elin | ⊢ ( 𝑅 ∈ ( TopGrp ∩ Ring ) ↔ ( 𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ) ) | |
| 3 | 2 | anbi1i | ⊢ ( ( 𝑅 ∈ ( TopGrp ∩ Ring ) ∧ 𝑀 ∈ TopMnd ) ↔ ( ( 𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ) ∧ 𝑀 ∈ TopMnd ) ) |
| 4 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( mulGrp ‘ 𝑟 ) = ( mulGrp ‘ 𝑅 ) ) | |
| 5 | 4 1 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( mulGrp ‘ 𝑟 ) = 𝑀 ) |
| 6 | 5 | eleq1d | ⊢ ( 𝑟 = 𝑅 → ( ( mulGrp ‘ 𝑟 ) ∈ TopMnd ↔ 𝑀 ∈ TopMnd ) ) |
| 7 | df-trg | ⊢ TopRing = { 𝑟 ∈ ( TopGrp ∩ Ring ) ∣ ( mulGrp ‘ 𝑟 ) ∈ TopMnd } | |
| 8 | 6 7 | elrab2 | ⊢ ( 𝑅 ∈ TopRing ↔ ( 𝑅 ∈ ( TopGrp ∩ Ring ) ∧ 𝑀 ∈ TopMnd ) ) |
| 9 | df-3an | ⊢ ( ( 𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ TopMnd ) ↔ ( ( 𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ) ∧ 𝑀 ∈ TopMnd ) ) | |
| 10 | 3 8 9 | 3bitr4i | ⊢ ( 𝑅 ∈ TopRing ↔ ( 𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ TopMnd ) ) |