This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The canonical embedding of the rationals into the reals. (Contributed by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nqpr | ⊢ ( 𝐴 ∈ Q → { 𝑥 ∣ 𝑥 <Q 𝐴 } ∈ P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsmallnq | ⊢ ( 𝐴 ∈ Q → ∃ 𝑥 𝑥 <Q 𝐴 ) | |
| 2 | abn0 | ⊢ ( { 𝑥 ∣ 𝑥 <Q 𝐴 } ≠ ∅ ↔ ∃ 𝑥 𝑥 <Q 𝐴 ) | |
| 3 | 1 2 | sylibr | ⊢ ( 𝐴 ∈ Q → { 𝑥 ∣ 𝑥 <Q 𝐴 } ≠ ∅ ) |
| 4 | 0pss | ⊢ ( ∅ ⊊ { 𝑥 ∣ 𝑥 <Q 𝐴 } ↔ { 𝑥 ∣ 𝑥 <Q 𝐴 } ≠ ∅ ) | |
| 5 | 3 4 | sylibr | ⊢ ( 𝐴 ∈ Q → ∅ ⊊ { 𝑥 ∣ 𝑥 <Q 𝐴 } ) |
| 6 | ltrelnq | ⊢ <Q ⊆ ( Q × Q ) | |
| 7 | 6 | brel | ⊢ ( 𝑥 <Q 𝐴 → ( 𝑥 ∈ Q ∧ 𝐴 ∈ Q ) ) |
| 8 | 7 | simpld | ⊢ ( 𝑥 <Q 𝐴 → 𝑥 ∈ Q ) |
| 9 | 8 | abssi | ⊢ { 𝑥 ∣ 𝑥 <Q 𝐴 } ⊆ Q |
| 10 | ltsonq | ⊢ <Q Or Q | |
| 11 | 10 6 | soirri | ⊢ ¬ 𝐴 <Q 𝐴 |
| 12 | breq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 <Q 𝐴 ↔ 𝐴 <Q 𝐴 ) ) | |
| 13 | 12 | elabg | ⊢ ( 𝐴 ∈ Q → ( 𝐴 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ↔ 𝐴 <Q 𝐴 ) ) |
| 14 | 11 13 | mtbiri | ⊢ ( 𝐴 ∈ Q → ¬ 𝐴 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ) |
| 15 | 14 | ancli | ⊢ ( 𝐴 ∈ Q → ( 𝐴 ∈ Q ∧ ¬ 𝐴 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ) ) |
| 16 | ssnelpss | ⊢ ( { 𝑥 ∣ 𝑥 <Q 𝐴 } ⊆ Q → ( ( 𝐴 ∈ Q ∧ ¬ 𝐴 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ) → { 𝑥 ∣ 𝑥 <Q 𝐴 } ⊊ Q ) ) | |
| 17 | 9 15 16 | mpsyl | ⊢ ( 𝐴 ∈ Q → { 𝑥 ∣ 𝑥 <Q 𝐴 } ⊊ Q ) |
| 18 | vex | ⊢ 𝑦 ∈ V | |
| 19 | breq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 <Q 𝐴 ↔ 𝑦 <Q 𝐴 ) ) | |
| 20 | 18 19 | elab | ⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ↔ 𝑦 <Q 𝐴 ) |
| 21 | 10 6 | sotri | ⊢ ( ( 𝑧 <Q 𝑦 ∧ 𝑦 <Q 𝐴 ) → 𝑧 <Q 𝐴 ) |
| 22 | 21 | expcom | ⊢ ( 𝑦 <Q 𝐴 → ( 𝑧 <Q 𝑦 → 𝑧 <Q 𝐴 ) ) |
| 23 | 22 | adantl | ⊢ ( ( 𝐴 ∈ Q ∧ 𝑦 <Q 𝐴 ) → ( 𝑧 <Q 𝑦 → 𝑧 <Q 𝐴 ) ) |
| 24 | vex | ⊢ 𝑧 ∈ V | |
| 25 | breq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 <Q 𝐴 ↔ 𝑧 <Q 𝐴 ) ) | |
| 26 | 24 25 | elab | ⊢ ( 𝑧 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ↔ 𝑧 <Q 𝐴 ) |
| 27 | 23 26 | imbitrrdi | ⊢ ( ( 𝐴 ∈ Q ∧ 𝑦 <Q 𝐴 ) → ( 𝑧 <Q 𝑦 → 𝑧 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ) ) |
| 28 | 27 | alrimiv | ⊢ ( ( 𝐴 ∈ Q ∧ 𝑦 <Q 𝐴 ) → ∀ 𝑧 ( 𝑧 <Q 𝑦 → 𝑧 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ) ) |
| 29 | ltbtwnnq | ⊢ ( 𝑦 <Q 𝐴 ↔ ∃ 𝑧 ( 𝑦 <Q 𝑧 ∧ 𝑧 <Q 𝐴 ) ) | |
| 30 | 26 | anbi2i | ⊢ ( ( 𝑦 <Q 𝑧 ∧ 𝑧 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ) ↔ ( 𝑦 <Q 𝑧 ∧ 𝑧 <Q 𝐴 ) ) |
| 31 | 30 | biimpri | ⊢ ( ( 𝑦 <Q 𝑧 ∧ 𝑧 <Q 𝐴 ) → ( 𝑦 <Q 𝑧 ∧ 𝑧 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ) ) |
| 32 | 31 | ancomd | ⊢ ( ( 𝑦 <Q 𝑧 ∧ 𝑧 <Q 𝐴 ) → ( 𝑧 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ∧ 𝑦 <Q 𝑧 ) ) |
| 33 | 32 | eximi | ⊢ ( ∃ 𝑧 ( 𝑦 <Q 𝑧 ∧ 𝑧 <Q 𝐴 ) → ∃ 𝑧 ( 𝑧 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ∧ 𝑦 <Q 𝑧 ) ) |
| 34 | 29 33 | sylbi | ⊢ ( 𝑦 <Q 𝐴 → ∃ 𝑧 ( 𝑧 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ∧ 𝑦 <Q 𝑧 ) ) |
| 35 | 34 | adantl | ⊢ ( ( 𝐴 ∈ Q ∧ 𝑦 <Q 𝐴 ) → ∃ 𝑧 ( 𝑧 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ∧ 𝑦 <Q 𝑧 ) ) |
| 36 | df-rex | ⊢ ( ∃ 𝑧 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } 𝑦 <Q 𝑧 ↔ ∃ 𝑧 ( 𝑧 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ∧ 𝑦 <Q 𝑧 ) ) | |
| 37 | 35 36 | sylibr | ⊢ ( ( 𝐴 ∈ Q ∧ 𝑦 <Q 𝐴 ) → ∃ 𝑧 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } 𝑦 <Q 𝑧 ) |
| 38 | 28 37 | jca | ⊢ ( ( 𝐴 ∈ Q ∧ 𝑦 <Q 𝐴 ) → ( ∀ 𝑧 ( 𝑧 <Q 𝑦 → 𝑧 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ) ∧ ∃ 𝑧 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } 𝑦 <Q 𝑧 ) ) |
| 39 | 20 38 | sylan2b | ⊢ ( ( 𝐴 ∈ Q ∧ 𝑦 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ) → ( ∀ 𝑧 ( 𝑧 <Q 𝑦 → 𝑧 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ) ∧ ∃ 𝑧 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } 𝑦 <Q 𝑧 ) ) |
| 40 | 39 | ralrimiva | ⊢ ( 𝐴 ∈ Q → ∀ 𝑦 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ( ∀ 𝑧 ( 𝑧 <Q 𝑦 → 𝑧 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ) ∧ ∃ 𝑧 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } 𝑦 <Q 𝑧 ) ) |
| 41 | elnp | ⊢ ( { 𝑥 ∣ 𝑥 <Q 𝐴 } ∈ P ↔ ( ( ∅ ⊊ { 𝑥 ∣ 𝑥 <Q 𝐴 } ∧ { 𝑥 ∣ 𝑥 <Q 𝐴 } ⊊ Q ) ∧ ∀ 𝑦 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ( ∀ 𝑧 ( 𝑧 <Q 𝑦 → 𝑧 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ) ∧ ∃ 𝑧 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } 𝑦 <Q 𝑧 ) ) ) | |
| 42 | 5 17 40 41 | syl21anbrc | ⊢ ( 𝐴 ∈ Q → { 𝑥 ∣ 𝑥 <Q 𝐴 } ∈ P ) |