This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The canonical embedding of the rationals into the reals. (Contributed by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nqpr | |- ( A e. Q. -> { x | x |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsmallnq | |- ( A e. Q. -> E. x x |
|
| 2 | abn0 | |- ( { x | x |
|
| 3 | 1 2 | sylibr | |- ( A e. Q. -> { x | x |
| 4 | 0pss | |- ( (/) C. { x | x |
|
| 5 | 3 4 | sylibr | |- ( A e. Q. -> (/) C. { x | x |
| 6 | ltrelnq | |- |
|
| 7 | 6 | brel | |- ( x( x e. Q. /\ A e. Q. ) ) |
| 8 | 7 | simpld | |- ( xx e. Q. ) |
| 9 | 8 | abssi | |- { x | x |
| 10 | ltsonq | |- |
|
| 11 | 10 6 | soirri | |- -. A |
| 12 | breq1 | |- ( x = A -> ( xA |
|
| 13 | 12 | elabg | |- ( A e. Q. -> ( A e. { x | x |
| 14 | 11 13 | mtbiri | |- ( A e. Q. -> -. A e. { x | x |
| 15 | 14 | ancli | |- ( A e. Q. -> ( A e. Q. /\ -. A e. { x | x |
| 16 | ssnelpss | |- ( { x | x |
|
| 17 | 9 15 16 | mpsyl | |- ( A e. Q. -> { x | x |
| 18 | vex | |- y e. _V |
|
| 19 | breq1 | |- ( x = y -> ( xy |
|
| 20 | 18 19 | elab | |- ( y e. { x | x |
| 21 | 10 6 | sotri | |- ( ( zz |
| 22 | 21 | expcom | |- ( y( zz |
| 23 | 22 | adantl | |- ( ( A e. Q. /\ y( zz |
| 24 | vex | |- z e. _V |
|
| 25 | breq1 | |- ( x = z -> ( xz |
|
| 26 | 24 25 | elab | |- ( z e. { x | x |
| 27 | 23 26 | imbitrrdi | |- ( ( A e. Q. /\ y( zz e. { x | x |
| 28 | 27 | alrimiv | |- ( ( A e. Q. /\ yA. z ( zz e. { x | x |
| 29 | ltbtwnnq | |- ( yE. z ( y |
|
| 30 | 26 | anbi2i | |- ( ( y( y |
| 31 | 30 | biimpri | |- ( ( y( y |
| 32 | 31 | ancomd | |- ( ( y( z e. { x | x |
| 33 | 32 | eximi | |- ( E. z ( yE. z ( z e. { x | x |
| 34 | 29 33 | sylbi | |- ( yE. z ( z e. { x | x |
| 35 | 34 | adantl | |- ( ( A e. Q. /\ yE. z ( z e. { x | x |
| 36 | df-rex | |- ( E. z e. { x | x |
|
| 37 | 35 36 | sylibr | |- ( ( A e. Q. /\ yE. z e. { x | x |
| 38 | 28 37 | jca | |- ( ( A e. Q. /\ y( A. z ( zz e. { x | x |
| 39 | 20 38 | sylan2b | |- ( ( A e. Q. /\ y e. { x | x |
| 40 | 39 | ralrimiva | |- ( A e. Q. -> A. y e. { x | x |
| 41 | elnp | |- ( { x | x |
|
| 42 | 5 17 40 41 | syl21anbrc | |- ( A e. Q. -> { x | x |