This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square root function is positive for positive input. (Contributed by Mario Carneiro, 10-Jul-2013) (Revised by Mario Carneiro, 6-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqrtgt0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 < ( √ ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | ⊢ 0 ∈ ℝ | |
| 2 | ltle | ⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐴 → 0 ≤ 𝐴 ) ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 → 0 ≤ 𝐴 ) ) |
| 4 | 3 | imp | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 ≤ 𝐴 ) |
| 5 | resqrtcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( √ ‘ 𝐴 ) ∈ ℝ ) | |
| 6 | 4 5 | syldan | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( √ ‘ 𝐴 ) ∈ ℝ ) |
| 7 | sqrtge0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 0 ≤ ( √ ‘ 𝐴 ) ) | |
| 8 | 4 7 | syldan | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 ≤ ( √ ‘ 𝐴 ) ) |
| 9 | gt0ne0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 ) | |
| 10 | sq0i | ⊢ ( ( √ ‘ 𝐴 ) = 0 → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 0 ) | |
| 11 | resqrtth | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) | |
| 12 | 4 11 | syldan | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) |
| 13 | 12 | eqeq1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( ( ( √ ‘ 𝐴 ) ↑ 2 ) = 0 ↔ 𝐴 = 0 ) ) |
| 14 | 10 13 | imbitrid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( ( √ ‘ 𝐴 ) = 0 → 𝐴 = 0 ) ) |
| 15 | 14 | necon3d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 𝐴 ≠ 0 → ( √ ‘ 𝐴 ) ≠ 0 ) ) |
| 16 | 9 15 | mpd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( √ ‘ 𝐴 ) ≠ 0 ) |
| 17 | 6 8 16 | ne0gt0d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 < ( √ ‘ 𝐴 ) ) |