This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Identity law for inner product. Postulate (S4) of Beran p. 95. (Contributed by NM, 29-May-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ax-his4 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 0 < ( 𝐴 ·ih 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cA | ⊢ 𝐴 | |
| 1 | chba | ⊢ ℋ | |
| 2 | 0 1 | wcel | ⊢ 𝐴 ∈ ℋ |
| 3 | c0v | ⊢ 0ℎ | |
| 4 | 0 3 | wne | ⊢ 𝐴 ≠ 0ℎ |
| 5 | 2 4 | wa | ⊢ ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) |
| 6 | cc0 | ⊢ 0 | |
| 7 | clt | ⊢ < | |
| 8 | csp | ⊢ ·ih | |
| 9 | 0 0 8 | co | ⊢ ( 𝐴 ·ih 𝐴 ) |
| 10 | 6 9 7 | wbr | ⊢ 0 < ( 𝐴 ·ih 𝐴 ) |
| 11 | 5 10 | wi | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 0 < ( 𝐴 ·ih 𝐴 ) ) |