This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for natural numbers (left-distributivity). Theorem 4K(3) of Enderton p. 81. (Contributed by NM, 20-Sep-1995) (Revised by Mario Carneiro, 15-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nndi | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐴 ·o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑥 = 𝐶 → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o 𝐶 ) ) | |
| 2 | 1 | oveq2d | ⊢ ( 𝑥 = 𝐶 → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( 𝐴 ·o ( 𝐵 +o 𝐶 ) ) ) |
| 3 | oveq2 | ⊢ ( 𝑥 = 𝐶 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o 𝐶 ) ) | |
| 4 | 3 | oveq2d | ⊢ ( 𝑥 = 𝐶 → ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝐶 ) ) ) |
| 5 | 2 4 | eqeq12d | ⊢ ( 𝑥 = 𝐶 → ( ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ↔ ( 𝐴 ·o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝐶 ) ) ) ) |
| 6 | 5 | imbi2d | ⊢ ( 𝑥 = 𝐶 → ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ) ↔ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ·o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝐶 ) ) ) ) ) |
| 7 | oveq2 | ⊢ ( 𝑥 = ∅ → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o ∅ ) ) | |
| 8 | 7 | oveq2d | ⊢ ( 𝑥 = ∅ → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( 𝐴 ·o ( 𝐵 +o ∅ ) ) ) |
| 9 | oveq2 | ⊢ ( 𝑥 = ∅ → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o ∅ ) ) | |
| 10 | 9 | oveq2d | ⊢ ( 𝑥 = ∅ → ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o ∅ ) ) ) |
| 11 | 8 10 | eqeq12d | ⊢ ( 𝑥 = ∅ → ( ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ↔ ( 𝐴 ·o ( 𝐵 +o ∅ ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o ∅ ) ) ) ) |
| 12 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o 𝑦 ) ) | |
| 13 | 12 | oveq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) ) |
| 14 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o 𝑦 ) ) | |
| 15 | 14 | oveq2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) |
| 16 | 13 15 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ↔ ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ) |
| 17 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o suc 𝑦 ) ) | |
| 18 | 17 | oveq2d | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( 𝐴 ·o ( 𝐵 +o suc 𝑦 ) ) ) |
| 19 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o suc 𝑦 ) ) | |
| 20 | 19 | oveq2d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o suc 𝑦 ) ) ) |
| 21 | 18 20 | eqeq12d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ↔ ( 𝐴 ·o ( 𝐵 +o suc 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o suc 𝑦 ) ) ) ) |
| 22 | nna0 | ⊢ ( 𝐵 ∈ ω → ( 𝐵 +o ∅ ) = 𝐵 ) | |
| 23 | 22 | adantl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐵 +o ∅ ) = 𝐵 ) |
| 24 | 23 | oveq2d | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ·o ( 𝐵 +o ∅ ) ) = ( 𝐴 ·o 𝐵 ) ) |
| 25 | nnmcl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ·o 𝐵 ) ∈ ω ) | |
| 26 | nna0 | ⊢ ( ( 𝐴 ·o 𝐵 ) ∈ ω → ( ( 𝐴 ·o 𝐵 ) +o ∅ ) = ( 𝐴 ·o 𝐵 ) ) | |
| 27 | 25 26 | syl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 𝐴 ·o 𝐵 ) +o ∅ ) = ( 𝐴 ·o 𝐵 ) ) |
| 28 | 24 27 | eqtr4d | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ·o ( 𝐵 +o ∅ ) ) = ( ( 𝐴 ·o 𝐵 ) +o ∅ ) ) |
| 29 | nnm0 | ⊢ ( 𝐴 ∈ ω → ( 𝐴 ·o ∅ ) = ∅ ) | |
| 30 | 29 | adantr | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ·o ∅ ) = ∅ ) |
| 31 | 30 | oveq2d | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o ∅ ) ) = ( ( 𝐴 ·o 𝐵 ) +o ∅ ) ) |
| 32 | 28 31 | eqtr4d | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ·o ( 𝐵 +o ∅ ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o ∅ ) ) ) |
| 33 | oveq1 | ⊢ ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) → ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) +o 𝐴 ) = ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) ) | |
| 34 | nnasuc | ⊢ ( ( 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐵 +o suc 𝑦 ) = suc ( 𝐵 +o 𝑦 ) ) | |
| 35 | 34 | 3adant1 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐵 +o suc 𝑦 ) = suc ( 𝐵 +o 𝑦 ) ) |
| 36 | 35 | oveq2d | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 ·o ( 𝐵 +o suc 𝑦 ) ) = ( 𝐴 ·o suc ( 𝐵 +o 𝑦 ) ) ) |
| 37 | nnacl | ⊢ ( ( 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐵 +o 𝑦 ) ∈ ω ) | |
| 38 | nnmsuc | ⊢ ( ( 𝐴 ∈ ω ∧ ( 𝐵 +o 𝑦 ) ∈ ω ) → ( 𝐴 ·o suc ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) +o 𝐴 ) ) | |
| 39 | 37 38 | sylan2 | ⊢ ( ( 𝐴 ∈ ω ∧ ( 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) ) → ( 𝐴 ·o suc ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) +o 𝐴 ) ) |
| 40 | 39 | 3impb | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 ·o suc ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) +o 𝐴 ) ) |
| 41 | 36 40 | eqtrd | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 ·o ( 𝐵 +o suc 𝑦 ) ) = ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) +o 𝐴 ) ) |
| 42 | nnmsuc | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 ·o suc 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) | |
| 43 | 42 | 3adant2 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 ·o suc 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) |
| 44 | 43 | oveq2d | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o suc 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) ) |
| 45 | nnmcl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 ·o 𝑦 ) ∈ ω ) | |
| 46 | nnaass | ⊢ ( ( ( 𝐴 ·o 𝐵 ) ∈ ω ∧ ( 𝐴 ·o 𝑦 ) ∈ ω ∧ 𝐴 ∈ ω ) → ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) = ( ( 𝐴 ·o 𝐵 ) +o ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) ) | |
| 47 | 25 46 | syl3an1 | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝐴 ·o 𝑦 ) ∈ ω ∧ 𝐴 ∈ ω ) → ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) = ( ( 𝐴 ·o 𝐵 ) +o ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) ) |
| 48 | 45 47 | syl3an2 | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) ∧ 𝐴 ∈ ω ) → ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) = ( ( 𝐴 ·o 𝐵 ) +o ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) ) |
| 49 | 48 | 3exp | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 ∈ ω → ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) = ( ( 𝐴 ·o 𝐵 ) +o ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) ) ) ) |
| 50 | 49 | exp4b | ⊢ ( 𝐴 ∈ ω → ( 𝐵 ∈ ω → ( 𝐴 ∈ ω → ( 𝑦 ∈ ω → ( 𝐴 ∈ ω → ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) = ( ( 𝐴 ·o 𝐵 ) +o ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) ) ) ) ) ) |
| 51 | 50 | pm2.43a | ⊢ ( 𝐴 ∈ ω → ( 𝐵 ∈ ω → ( 𝑦 ∈ ω → ( 𝐴 ∈ ω → ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) = ( ( 𝐴 ·o 𝐵 ) +o ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) ) ) ) ) |
| 52 | 51 | com4r | ⊢ ( 𝐴 ∈ ω → ( 𝐴 ∈ ω → ( 𝐵 ∈ ω → ( 𝑦 ∈ ω → ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) = ( ( 𝐴 ·o 𝐵 ) +o ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) ) ) ) ) |
| 53 | 52 | pm2.43i | ⊢ ( 𝐴 ∈ ω → ( 𝐵 ∈ ω → ( 𝑦 ∈ ω → ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) = ( ( 𝐴 ·o 𝐵 ) +o ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) ) ) ) |
| 54 | 53 | 3imp | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) = ( ( 𝐴 ·o 𝐵 ) +o ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) ) |
| 55 | 44 54 | eqtr4d | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o suc 𝑦 ) ) = ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) ) |
| 56 | 41 55 | eqeq12d | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ·o ( 𝐵 +o suc 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o suc 𝑦 ) ) ↔ ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) +o 𝐴 ) = ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) ) ) |
| 57 | 33 56 | imbitrrid | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) → ( 𝐴 ·o ( 𝐵 +o suc 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o suc 𝑦 ) ) ) ) |
| 58 | 57 | 3exp | ⊢ ( 𝐴 ∈ ω → ( 𝐵 ∈ ω → ( 𝑦 ∈ ω → ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) → ( 𝐴 ·o ( 𝐵 +o suc 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o suc 𝑦 ) ) ) ) ) ) |
| 59 | 58 | com3r | ⊢ ( 𝑦 ∈ ω → ( 𝐴 ∈ ω → ( 𝐵 ∈ ω → ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) → ( 𝐴 ·o ( 𝐵 +o suc 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o suc 𝑦 ) ) ) ) ) ) |
| 60 | 59 | impd | ⊢ ( 𝑦 ∈ ω → ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) → ( 𝐴 ·o ( 𝐵 +o suc 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o suc 𝑦 ) ) ) ) ) |
| 61 | 11 16 21 32 60 | finds2 | ⊢ ( 𝑥 ∈ ω → ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ) ) |
| 62 | 6 61 | vtoclga | ⊢ ( 𝐶 ∈ ω → ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ·o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝐶 ) ) ) ) |
| 63 | 62 | expdcom | ⊢ ( 𝐴 ∈ ω → ( 𝐵 ∈ ω → ( 𝐶 ∈ ω → ( 𝐴 ·o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝐶 ) ) ) ) ) |
| 64 | 63 | 3imp | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐴 ·o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝐶 ) ) ) |