This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of natural numbers is associative. Theorem 4K(4) of Enderton p. 81. (Contributed by NM, 20-Sep-1995) (Revised by Mario Carneiro, 15-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnmass | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝐶 ) = ( 𝐴 ·o ( 𝐵 ·o 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑥 = 𝐶 → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( ( 𝐴 ·o 𝐵 ) ·o 𝐶 ) ) | |
| 2 | oveq2 | ⊢ ( 𝑥 = 𝐶 → ( 𝐵 ·o 𝑥 ) = ( 𝐵 ·o 𝐶 ) ) | |
| 3 | 2 | oveq2d | ⊢ ( 𝑥 = 𝐶 → ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) = ( 𝐴 ·o ( 𝐵 ·o 𝐶 ) ) ) |
| 4 | 1 3 | eqeq12d | ⊢ ( 𝑥 = 𝐶 → ( ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) ↔ ( ( 𝐴 ·o 𝐵 ) ·o 𝐶 ) = ( 𝐴 ·o ( 𝐵 ·o 𝐶 ) ) ) ) |
| 5 | 4 | imbi2d | ⊢ ( 𝑥 = 𝐶 → ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) ) ↔ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝐶 ) = ( 𝐴 ·o ( 𝐵 ·o 𝐶 ) ) ) ) ) |
| 6 | oveq2 | ⊢ ( 𝑥 = ∅ → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( ( 𝐴 ·o 𝐵 ) ·o ∅ ) ) | |
| 7 | oveq2 | ⊢ ( 𝑥 = ∅ → ( 𝐵 ·o 𝑥 ) = ( 𝐵 ·o ∅ ) ) | |
| 8 | 7 | oveq2d | ⊢ ( 𝑥 = ∅ → ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) = ( 𝐴 ·o ( 𝐵 ·o ∅ ) ) ) |
| 9 | 6 8 | eqeq12d | ⊢ ( 𝑥 = ∅ → ( ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) ↔ ( ( 𝐴 ·o 𝐵 ) ·o ∅ ) = ( 𝐴 ·o ( 𝐵 ·o ∅ ) ) ) ) |
| 10 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) ) | |
| 11 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐵 ·o 𝑥 ) = ( 𝐵 ·o 𝑦 ) ) | |
| 12 | 11 | oveq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) |
| 13 | 10 12 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) ↔ ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) ) |
| 14 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( ( 𝐴 ·o 𝐵 ) ·o suc 𝑦 ) ) | |
| 15 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐵 ·o 𝑥 ) = ( 𝐵 ·o suc 𝑦 ) ) | |
| 16 | 15 | oveq2d | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) = ( 𝐴 ·o ( 𝐵 ·o suc 𝑦 ) ) ) |
| 17 | 14 16 | eqeq12d | ⊢ ( 𝑥 = suc 𝑦 → ( ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) ↔ ( ( 𝐴 ·o 𝐵 ) ·o suc 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o suc 𝑦 ) ) ) ) |
| 18 | nnmcl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ·o 𝐵 ) ∈ ω ) | |
| 19 | nnm0 | ⊢ ( ( 𝐴 ·o 𝐵 ) ∈ ω → ( ( 𝐴 ·o 𝐵 ) ·o ∅ ) = ∅ ) | |
| 20 | 18 19 | syl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 𝐴 ·o 𝐵 ) ·o ∅ ) = ∅ ) |
| 21 | nnm0 | ⊢ ( 𝐵 ∈ ω → ( 𝐵 ·o ∅ ) = ∅ ) | |
| 22 | 21 | oveq2d | ⊢ ( 𝐵 ∈ ω → ( 𝐴 ·o ( 𝐵 ·o ∅ ) ) = ( 𝐴 ·o ∅ ) ) |
| 23 | nnm0 | ⊢ ( 𝐴 ∈ ω → ( 𝐴 ·o ∅ ) = ∅ ) | |
| 24 | 22 23 | sylan9eqr | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ·o ( 𝐵 ·o ∅ ) ) = ∅ ) |
| 25 | 20 24 | eqtr4d | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 𝐴 ·o 𝐵 ) ·o ∅ ) = ( 𝐴 ·o ( 𝐵 ·o ∅ ) ) ) |
| 26 | oveq1 | ⊢ ( ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) → ( ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) +o ( 𝐴 ·o 𝐵 ) ) = ( ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) +o ( 𝐴 ·o 𝐵 ) ) ) | |
| 27 | nnmsuc | ⊢ ( ( ( 𝐴 ·o 𝐵 ) ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ·o 𝐵 ) ·o suc 𝑦 ) = ( ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) +o ( 𝐴 ·o 𝐵 ) ) ) | |
| 28 | 18 27 | stoic3 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ·o 𝐵 ) ·o suc 𝑦 ) = ( ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) +o ( 𝐴 ·o 𝐵 ) ) ) |
| 29 | nnmsuc | ⊢ ( ( 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐵 ·o suc 𝑦 ) = ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) | |
| 30 | 29 | 3adant1 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐵 ·o suc 𝑦 ) = ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) |
| 31 | 30 | oveq2d | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 ·o ( 𝐵 ·o suc 𝑦 ) ) = ( 𝐴 ·o ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) ) |
| 32 | nnmcl | ⊢ ( ( 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐵 ·o 𝑦 ) ∈ ω ) | |
| 33 | nndi | ⊢ ( ( 𝐴 ∈ ω ∧ ( 𝐵 ·o 𝑦 ) ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ·o ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) = ( ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) +o ( 𝐴 ·o 𝐵 ) ) ) | |
| 34 | 32 33 | syl3an2 | ⊢ ( ( 𝐴 ∈ ω ∧ ( 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) ∧ 𝐵 ∈ ω ) → ( 𝐴 ·o ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) = ( ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) +o ( 𝐴 ·o 𝐵 ) ) ) |
| 35 | 34 | 3exp | ⊢ ( 𝐴 ∈ ω → ( ( 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐵 ∈ ω → ( 𝐴 ·o ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) = ( ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) +o ( 𝐴 ·o 𝐵 ) ) ) ) ) |
| 36 | 35 | expd | ⊢ ( 𝐴 ∈ ω → ( 𝐵 ∈ ω → ( 𝑦 ∈ ω → ( 𝐵 ∈ ω → ( 𝐴 ·o ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) = ( ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) +o ( 𝐴 ·o 𝐵 ) ) ) ) ) ) |
| 37 | 36 | com34 | ⊢ ( 𝐴 ∈ ω → ( 𝐵 ∈ ω → ( 𝐵 ∈ ω → ( 𝑦 ∈ ω → ( 𝐴 ·o ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) = ( ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) +o ( 𝐴 ·o 𝐵 ) ) ) ) ) ) |
| 38 | 37 | pm2.43d | ⊢ ( 𝐴 ∈ ω → ( 𝐵 ∈ ω → ( 𝑦 ∈ ω → ( 𝐴 ·o ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) = ( ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) +o ( 𝐴 ·o 𝐵 ) ) ) ) ) |
| 39 | 38 | 3imp | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 ·o ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) = ( ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) +o ( 𝐴 ·o 𝐵 ) ) ) |
| 40 | 31 39 | eqtrd | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 ·o ( 𝐵 ·o suc 𝑦 ) ) = ( ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) +o ( 𝐴 ·o 𝐵 ) ) ) |
| 41 | 28 40 | eqeq12d | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( ( 𝐴 ·o 𝐵 ) ·o suc 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o suc 𝑦 ) ) ↔ ( ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) +o ( 𝐴 ·o 𝐵 ) ) = ( ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) +o ( 𝐴 ·o 𝐵 ) ) ) ) |
| 42 | 26 41 | imbitrrid | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) → ( ( 𝐴 ·o 𝐵 ) ·o suc 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o suc 𝑦 ) ) ) ) |
| 43 | 42 | 3exp | ⊢ ( 𝐴 ∈ ω → ( 𝐵 ∈ ω → ( 𝑦 ∈ ω → ( ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) → ( ( 𝐴 ·o 𝐵 ) ·o suc 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o suc 𝑦 ) ) ) ) ) ) |
| 44 | 43 | com3r | ⊢ ( 𝑦 ∈ ω → ( 𝐴 ∈ ω → ( 𝐵 ∈ ω → ( ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) → ( ( 𝐴 ·o 𝐵 ) ·o suc 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o suc 𝑦 ) ) ) ) ) ) |
| 45 | 44 | impd | ⊢ ( 𝑦 ∈ ω → ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) → ( ( 𝐴 ·o 𝐵 ) ·o suc 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o suc 𝑦 ) ) ) ) ) |
| 46 | 9 13 17 25 45 | finds2 | ⊢ ( 𝑥 ∈ ω → ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) ) ) |
| 47 | 5 46 | vtoclga | ⊢ ( 𝐶 ∈ ω → ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝐶 ) = ( 𝐴 ·o ( 𝐵 ·o 𝐶 ) ) ) ) |
| 48 | 47 | expdcom | ⊢ ( 𝐴 ∈ ω → ( 𝐵 ∈ ω → ( 𝐶 ∈ ω → ( ( 𝐴 ·o 𝐵 ) ·o 𝐶 ) = ( 𝐴 ·o ( 𝐵 ·o 𝐶 ) ) ) ) ) |
| 49 | 48 | 3imp | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝐶 ) = ( 𝐴 ·o ( 𝐵 ·o 𝐶 ) ) ) |