This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for nmoleub2a and similar theorems. (Contributed by Mario Carneiro, 19-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmoleub2.n | ⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) | |
| nmoleub2.v | ⊢ 𝑉 = ( Base ‘ 𝑆 ) | ||
| nmoleub2.l | ⊢ 𝐿 = ( norm ‘ 𝑆 ) | ||
| nmoleub2.m | ⊢ 𝑀 = ( norm ‘ 𝑇 ) | ||
| nmoleub2.g | ⊢ 𝐺 = ( Scalar ‘ 𝑆 ) | ||
| nmoleub2.w | ⊢ 𝐾 = ( Base ‘ 𝐺 ) | ||
| nmoleub2.s | ⊢ ( 𝜑 → 𝑆 ∈ ( NrmMod ∩ ℂMod ) ) | ||
| nmoleub2.t | ⊢ ( 𝜑 → 𝑇 ∈ ( NrmMod ∩ ℂMod ) ) | ||
| nmoleub2.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) | ||
| nmoleub2.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | ||
| nmoleub2.r | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | ||
| nmoleub2lem.5 | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → 0 ≤ 𝐴 ) | ||
| nmoleub2lem.6 | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) | ||
| nmoleub2lem.7 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝜓 → ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) | ||
| Assertion | nmoleub2lem | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ↔ ∀ 𝑥 ∈ 𝑉 ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoleub2.n | ⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) | |
| 2 | nmoleub2.v | ⊢ 𝑉 = ( Base ‘ 𝑆 ) | |
| 3 | nmoleub2.l | ⊢ 𝐿 = ( norm ‘ 𝑆 ) | |
| 4 | nmoleub2.m | ⊢ 𝑀 = ( norm ‘ 𝑇 ) | |
| 5 | nmoleub2.g | ⊢ 𝐺 = ( Scalar ‘ 𝑆 ) | |
| 6 | nmoleub2.w | ⊢ 𝐾 = ( Base ‘ 𝐺 ) | |
| 7 | nmoleub2.s | ⊢ ( 𝜑 → 𝑆 ∈ ( NrmMod ∩ ℂMod ) ) | |
| 8 | nmoleub2.t | ⊢ ( 𝜑 → 𝑇 ∈ ( NrmMod ∩ ℂMod ) ) | |
| 9 | nmoleub2.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) | |
| 10 | nmoleub2.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
| 11 | nmoleub2.r | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | |
| 12 | nmoleub2lem.5 | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → 0 ≤ 𝐴 ) | |
| 13 | nmoleub2lem.6 | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) | |
| 14 | nmoleub2lem.7 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝜓 → ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) | |
| 15 | 14 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝜓 → ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) |
| 16 | 8 | elin1d | ⊢ ( 𝜑 → 𝑇 ∈ NrmMod ) |
| 17 | nlmngp | ⊢ ( 𝑇 ∈ NrmMod → 𝑇 ∈ NrmGrp ) | |
| 18 | 16 17 | syl | ⊢ ( 𝜑 → 𝑇 ∈ NrmGrp ) |
| 19 | 18 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → 𝑇 ∈ NrmGrp ) |
| 20 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 21 | 2 20 | lmhmf | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ) |
| 22 | 9 21 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ) |
| 23 | 22 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ) |
| 24 | simprl | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → 𝑥 ∈ 𝑉 ) | |
| 25 | 23 24 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑇 ) ) |
| 26 | 20 4 | nmcl | ⊢ ( ( 𝑇 ∈ NrmGrp ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑇 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
| 27 | 19 25 26 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
| 28 | 11 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → 𝑅 ∈ ℝ+ ) |
| 29 | 27 28 | rerpdivcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ∈ ℝ ) |
| 30 | 29 | rexrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ∈ ℝ* ) |
| 31 | 7 | elin1d | ⊢ ( 𝜑 → 𝑆 ∈ NrmMod ) |
| 32 | nlmngp | ⊢ ( 𝑆 ∈ NrmMod → 𝑆 ∈ NrmGrp ) | |
| 33 | 31 32 | syl | ⊢ ( 𝜑 → 𝑆 ∈ NrmGrp ) |
| 34 | lmghm | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) | |
| 35 | 9 34 | syl | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 36 | 1 | nmocl | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝑁 ‘ 𝐹 ) ∈ ℝ* ) |
| 37 | 33 18 35 36 | syl3anc | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝐹 ) ∈ ℝ* ) |
| 38 | 37 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( 𝑁 ‘ 𝐹 ) ∈ ℝ* ) |
| 39 | 10 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → 𝐴 ∈ ℝ* ) |
| 40 | 28 | rpred | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → 𝑅 ∈ ℝ ) |
| 41 | rexmul | ⊢ ( ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ∈ ℝ ∧ 𝑅 ∈ ℝ ) → ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ·e 𝑅 ) = ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) · 𝑅 ) ) | |
| 42 | 29 40 41 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ·e 𝑅 ) = ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) · 𝑅 ) ) |
| 43 | 27 | recnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℂ ) |
| 44 | 40 | recnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → 𝑅 ∈ ℂ ) |
| 45 | 28 | rpne0d | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → 𝑅 ≠ 0 ) |
| 46 | 43 44 45 | divcan1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) · 𝑅 ) = ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 47 | 42 46 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ·e 𝑅 ) = ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 48 | 27 | rexrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ* ) |
| 49 | 33 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → 𝑆 ∈ NrmGrp ) |
| 50 | 2 3 | nmcl | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑥 ∈ 𝑉 ) → ( 𝐿 ‘ 𝑥 ) ∈ ℝ ) |
| 51 | 49 24 50 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( 𝐿 ‘ 𝑥 ) ∈ ℝ ) |
| 52 | 51 | rexrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( 𝐿 ‘ 𝑥 ) ∈ ℝ* ) |
| 53 | 38 52 | xmulcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( ( 𝑁 ‘ 𝐹 ) ·e ( 𝐿 ‘ 𝑥 ) ) ∈ ℝ* ) |
| 54 | 28 | rpxrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → 𝑅 ∈ ℝ* ) |
| 55 | 38 54 | xmulcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( ( 𝑁 ‘ 𝐹 ) ·e 𝑅 ) ∈ ℝ* ) |
| 56 | 35 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 57 | 1 2 3 4 | nmoix | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) ·e ( 𝐿 ‘ 𝑥 ) ) ) |
| 58 | 49 19 56 24 57 | syl31anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) ·e ( 𝐿 ‘ 𝑥 ) ) ) |
| 59 | 1 | nmoge0 | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → 0 ≤ ( 𝑁 ‘ 𝐹 ) ) |
| 60 | 33 18 35 59 | syl3anc | ⊢ ( 𝜑 → 0 ≤ ( 𝑁 ‘ 𝐹 ) ) |
| 61 | 37 60 | jca | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐹 ) ∈ ℝ* ∧ 0 ≤ ( 𝑁 ‘ 𝐹 ) ) ) |
| 62 | 61 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( ( 𝑁 ‘ 𝐹 ) ∈ ℝ* ∧ 0 ≤ ( 𝑁 ‘ 𝐹 ) ) ) |
| 63 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) | |
| 64 | xlemul2a | ⊢ ( ( ( ( 𝐿 ‘ 𝑥 ) ∈ ℝ* ∧ 𝑅 ∈ ℝ* ∧ ( ( 𝑁 ‘ 𝐹 ) ∈ ℝ* ∧ 0 ≤ ( 𝑁 ‘ 𝐹 ) ) ) ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) → ( ( 𝑁 ‘ 𝐹 ) ·e ( 𝐿 ‘ 𝑥 ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) ·e 𝑅 ) ) | |
| 65 | 52 54 62 63 64 | syl31anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( ( 𝑁 ‘ 𝐹 ) ·e ( 𝐿 ‘ 𝑥 ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) ·e 𝑅 ) ) |
| 66 | 48 53 55 58 65 | xrletrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) ·e 𝑅 ) ) |
| 67 | 47 66 | eqbrtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ·e 𝑅 ) ≤ ( ( 𝑁 ‘ 𝐹 ) ·e 𝑅 ) ) |
| 68 | xlemul1 | ⊢ ( ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ∈ ℝ* ∧ ( 𝑁 ‘ 𝐹 ) ∈ ℝ* ∧ 𝑅 ∈ ℝ+ ) → ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ ( 𝑁 ‘ 𝐹 ) ↔ ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ·e 𝑅 ) ≤ ( ( 𝑁 ‘ 𝐹 ) ·e 𝑅 ) ) ) | |
| 69 | 30 38 28 68 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ ( 𝑁 ‘ 𝐹 ) ↔ ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ·e 𝑅 ) ≤ ( ( 𝑁 ‘ 𝐹 ) ·e 𝑅 ) ) ) |
| 70 | 67 69 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ ( 𝑁 ‘ 𝐹 ) ) |
| 71 | simplr | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) | |
| 72 | 30 38 39 70 71 | xrletrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) |
| 73 | 72 | expr | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) |
| 74 | 15 73 | syld | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) |
| 75 | 74 | ralrimiva | ⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) → ∀ 𝑥 ∈ 𝑉 ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) |
| 76 | eqid | ⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) | |
| 77 | 33 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) → 𝑆 ∈ NrmGrp ) |
| 78 | 18 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) → 𝑇 ∈ NrmGrp ) |
| 79 | 35 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 80 | simpr | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) → 𝐴 ∈ ℝ ) | |
| 81 | 12 | adantr | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) → 0 ≤ 𝐴 ) |
| 82 | 1 2 3 4 76 77 78 79 80 81 13 | nmolb2d | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) → ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) |
| 83 | 37 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 = +∞ ) → ( 𝑁 ‘ 𝐹 ) ∈ ℝ* ) |
| 84 | pnfge | ⊢ ( ( 𝑁 ‘ 𝐹 ) ∈ ℝ* → ( 𝑁 ‘ 𝐹 ) ≤ +∞ ) | |
| 85 | 83 84 | syl | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 = +∞ ) → ( 𝑁 ‘ 𝐹 ) ≤ +∞ ) |
| 86 | simpr | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 = +∞ ) → 𝐴 = +∞ ) | |
| 87 | 85 86 | breqtrrd | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 = +∞ ) → ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) |
| 88 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → 𝐴 ∈ ℝ* ) |
| 89 | ge0nemnf | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) → 𝐴 ≠ -∞ ) | |
| 90 | 88 12 89 | syl2anc | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → 𝐴 ≠ -∞ ) |
| 91 | 88 90 | jca | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞ ) ) |
| 92 | xrnemnf | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞ ) ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) ) | |
| 93 | 91 92 | sylib | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) ) |
| 94 | 82 87 93 | mpjaodan | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) |
| 95 | 75 94 | impbida | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ↔ ∀ 𝑥 ∈ 𝑉 ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ) |