This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any upper bound on the values of a linear operator at nonzero vectors translates to an upper bound on the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmofval.1 | ⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) | |
| nmofval.2 | ⊢ 𝑉 = ( Base ‘ 𝑆 ) | ||
| nmofval.3 | ⊢ 𝐿 = ( norm ‘ 𝑆 ) | ||
| nmofval.4 | ⊢ 𝑀 = ( norm ‘ 𝑇 ) | ||
| nmolb2d.z | ⊢ 0 = ( 0g ‘ 𝑆 ) | ||
| nmolb2d.1 | ⊢ ( 𝜑 → 𝑆 ∈ NrmGrp ) | ||
| nmolb2d.2 | ⊢ ( 𝜑 → 𝑇 ∈ NrmGrp ) | ||
| nmolb2d.3 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) | ||
| nmolb2d.4 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
| nmolb2d.5 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) | ||
| nmolb2d.6 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ≠ 0 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ) | ||
| Assertion | nmolb2d | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmofval.1 | ⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) | |
| 2 | nmofval.2 | ⊢ 𝑉 = ( Base ‘ 𝑆 ) | |
| 3 | nmofval.3 | ⊢ 𝐿 = ( norm ‘ 𝑆 ) | |
| 4 | nmofval.4 | ⊢ 𝑀 = ( norm ‘ 𝑇 ) | |
| 5 | nmolb2d.z | ⊢ 0 = ( 0g ‘ 𝑆 ) | |
| 6 | nmolb2d.1 | ⊢ ( 𝜑 → 𝑆 ∈ NrmGrp ) | |
| 7 | nmolb2d.2 | ⊢ ( 𝜑 → 𝑇 ∈ NrmGrp ) | |
| 8 | nmolb2d.3 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) | |
| 9 | nmolb2d.4 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 10 | nmolb2d.5 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) | |
| 11 | nmolb2d.6 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ≠ 0 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ) | |
| 12 | 2fveq3 | ⊢ ( 𝑥 = 0 → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑀 ‘ ( 𝐹 ‘ 0 ) ) ) | |
| 13 | fveq2 | ⊢ ( 𝑥 = 0 → ( 𝐿 ‘ 𝑥 ) = ( 𝐿 ‘ 0 ) ) | |
| 14 | 13 | oveq2d | ⊢ ( 𝑥 = 0 → ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) = ( 𝐴 · ( 𝐿 ‘ 0 ) ) ) |
| 15 | 12 14 | breq12d | ⊢ ( 𝑥 = 0 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ↔ ( 𝑀 ‘ ( 𝐹 ‘ 0 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 0 ) ) ) ) |
| 16 | 11 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) ∧ 𝑥 ≠ 0 ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ) |
| 17 | 0le0 | ⊢ 0 ≤ 0 | |
| 18 | 9 | recnd | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 19 | 18 | mul01d | ⊢ ( 𝜑 → ( 𝐴 · 0 ) = 0 ) |
| 20 | 17 19 | breqtrrid | ⊢ ( 𝜑 → 0 ≤ ( 𝐴 · 0 ) ) |
| 21 | eqid | ⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) | |
| 22 | 5 21 | ghmid | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑇 ) ) |
| 23 | 8 22 | syl | ⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑇 ) ) |
| 24 | 23 | fveq2d | ⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐹 ‘ 0 ) ) = ( 𝑀 ‘ ( 0g ‘ 𝑇 ) ) ) |
| 25 | 4 21 | nm0 | ⊢ ( 𝑇 ∈ NrmGrp → ( 𝑀 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) |
| 26 | 7 25 | syl | ⊢ ( 𝜑 → ( 𝑀 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) |
| 27 | 24 26 | eqtrd | ⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐹 ‘ 0 ) ) = 0 ) |
| 28 | 3 5 | nm0 | ⊢ ( 𝑆 ∈ NrmGrp → ( 𝐿 ‘ 0 ) = 0 ) |
| 29 | 6 28 | syl | ⊢ ( 𝜑 → ( 𝐿 ‘ 0 ) = 0 ) |
| 30 | 29 | oveq2d | ⊢ ( 𝜑 → ( 𝐴 · ( 𝐿 ‘ 0 ) ) = ( 𝐴 · 0 ) ) |
| 31 | 20 27 30 | 3brtr4d | ⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐹 ‘ 0 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 0 ) ) ) |
| 32 | 31 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝑀 ‘ ( 𝐹 ‘ 0 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 0 ) ) ) |
| 33 | 15 16 32 | pm2.61ne | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ) |
| 34 | 33 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ) |
| 35 | 1 2 3 4 | nmolb | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) → ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ) |
| 36 | 6 7 8 9 10 35 | syl311anc | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) → ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ) |
| 37 | 34 36 | mpd | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) |