This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The operator norm of an operator is nonnegative. (Contributed by Mario Carneiro, 18-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nmofval.1 | ⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) | |
| Assertion | nmoge0 | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → 0 ≤ ( 𝑁 ‘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmofval.1 | ⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) | |
| 2 | elrege0 | ⊢ ( 𝑟 ∈ ( 0 [,) +∞ ) ↔ ( 𝑟 ∈ ℝ ∧ 0 ≤ 𝑟 ) ) | |
| 3 | 2 | simprbi | ⊢ ( 𝑟 ∈ ( 0 [,) +∞ ) → 0 ≤ 𝑟 ) |
| 4 | 3 | adantl | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝑟 ∈ ( 0 [,) +∞ ) ) → 0 ≤ 𝑟 ) |
| 5 | 4 | a1d | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝑟 ∈ ( 0 [,) +∞ ) ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) → 0 ≤ 𝑟 ) ) |
| 6 | 5 | ralrimiva | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ∀ 𝑟 ∈ ( 0 [,) +∞ ) ( ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) → 0 ≤ 𝑟 ) ) |
| 7 | 0xr | ⊢ 0 ∈ ℝ* | |
| 8 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 9 | eqid | ⊢ ( norm ‘ 𝑆 ) = ( norm ‘ 𝑆 ) | |
| 10 | eqid | ⊢ ( norm ‘ 𝑇 ) = ( norm ‘ 𝑇 ) | |
| 11 | 1 8 9 10 | nmogelb | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 0 ∈ ℝ* ) → ( 0 ≤ ( 𝑁 ‘ 𝐹 ) ↔ ∀ 𝑟 ∈ ( 0 [,) +∞ ) ( ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) → 0 ≤ 𝑟 ) ) ) |
| 12 | 7 11 | mpan2 | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 0 ≤ ( 𝑁 ‘ 𝐹 ) ↔ ∀ 𝑟 ∈ ( 0 [,) +∞ ) ( ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) → 0 ≤ 𝑟 ) ) ) |
| 13 | 6 12 | mpbird | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → 0 ≤ ( 𝑁 ‘ 𝐹 ) ) |