This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways two express that an operator is unbounded. (Contributed by NM, 11-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmoubi.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nmoubi.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | ||
| nmoubi.l | ⊢ 𝐿 = ( normCV ‘ 𝑈 ) | ||
| nmoubi.m | ⊢ 𝑀 = ( normCV ‘ 𝑊 ) | ||
| nmoubi.3 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | ||
| nmoubi.u | ⊢ 𝑈 ∈ NrmCVec | ||
| nmoubi.w | ⊢ 𝑊 ∈ NrmCVec | ||
| Assertion | nmounbi | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → ( ( 𝑁 ‘ 𝑇 ) = +∞ ↔ ∀ 𝑟 ∈ ℝ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑟 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoubi.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nmoubi.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 3 | nmoubi.l | ⊢ 𝐿 = ( normCV ‘ 𝑈 ) | |
| 4 | nmoubi.m | ⊢ 𝑀 = ( normCV ‘ 𝑊 ) | |
| 5 | nmoubi.3 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | |
| 6 | nmoubi.u | ⊢ 𝑈 ∈ NrmCVec | |
| 7 | nmoubi.w | ⊢ 𝑊 ∈ NrmCVec | |
| 8 | 1 2 3 4 5 6 7 | nmobndi | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ ↔ ∃ 𝑟 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑟 ) ) ) |
| 9 | 1 2 5 | nmorepnf | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ ↔ ( 𝑁 ‘ 𝑇 ) ≠ +∞ ) ) |
| 10 | 6 7 9 | mp3an12 | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ ↔ ( 𝑁 ‘ 𝑇 ) ≠ +∞ ) ) |
| 11 | ffvelcdm | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑇 ‘ 𝑦 ) ∈ 𝑌 ) | |
| 12 | 2 4 | nvcl | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ ( 𝑇 ‘ 𝑦 ) ∈ 𝑌 ) → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ∈ ℝ ) |
| 13 | 7 11 12 | sylancr | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ∈ ℝ ) |
| 14 | lenlt | ⊢ ( ( ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ∈ ℝ ∧ 𝑟 ∈ ℝ ) → ( ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑟 ↔ ¬ 𝑟 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) | |
| 15 | 13 14 | sylan | ⊢ ( ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑟 ∈ ℝ ) → ( ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑟 ↔ ¬ 𝑟 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 16 | 15 | an32s | ⊢ ( ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝑟 ∈ ℝ ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑟 ↔ ¬ 𝑟 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 17 | 16 | imbi2d | ⊢ ( ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝑟 ∈ ℝ ) ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑟 ) ↔ ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ¬ 𝑟 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
| 18 | imnan | ⊢ ( ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ¬ 𝑟 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ↔ ¬ ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑟 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) | |
| 19 | 17 18 | bitrdi | ⊢ ( ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝑟 ∈ ℝ ) ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑟 ) ↔ ¬ ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑟 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
| 20 | 19 | ralbidva | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝑟 ∈ ℝ ) → ( ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑟 ) ↔ ∀ 𝑦 ∈ 𝑋 ¬ ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑟 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
| 21 | ralnex | ⊢ ( ∀ 𝑦 ∈ 𝑋 ¬ ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑟 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ↔ ¬ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑟 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) | |
| 22 | 20 21 | bitrdi | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝑟 ∈ ℝ ) → ( ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑟 ) ↔ ¬ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑟 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
| 23 | 22 | rexbidva | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → ( ∃ 𝑟 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑟 ) ↔ ∃ 𝑟 ∈ ℝ ¬ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑟 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
| 24 | rexnal | ⊢ ( ∃ 𝑟 ∈ ℝ ¬ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑟 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ↔ ¬ ∀ 𝑟 ∈ ℝ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑟 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) | |
| 25 | 23 24 | bitrdi | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → ( ∃ 𝑟 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑟 ) ↔ ¬ ∀ 𝑟 ∈ ℝ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑟 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
| 26 | 8 10 25 | 3bitr3d | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → ( ( 𝑁 ‘ 𝑇 ) ≠ +∞ ↔ ¬ ∀ 𝑟 ∈ ℝ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑟 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
| 27 | 26 | necon4abid | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → ( ( 𝑁 ‘ 𝑇 ) = +∞ ↔ ∀ 𝑟 ∈ ℝ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑟 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |