This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a nonzero linear operator is positive. (Contributed by NM, 10-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmlnogt0.3 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | |
| nmlnogt0.0 | ⊢ 𝑍 = ( 𝑈 0op 𝑊 ) | ||
| nmlnogt0.7 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) | ||
| Assertion | nmlnogt0 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → ( 𝑇 ≠ 𝑍 ↔ 0 < ( 𝑁 ‘ 𝑇 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmlnogt0.3 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | |
| 2 | nmlnogt0.0 | ⊢ 𝑍 = ( 𝑈 0op 𝑊 ) | |
| 3 | nmlnogt0.7 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) | |
| 4 | 1 2 3 | nmlno0 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → ( ( 𝑁 ‘ 𝑇 ) = 0 ↔ 𝑇 = 𝑍 ) ) |
| 5 | 4 | necon3bid | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → ( ( 𝑁 ‘ 𝑇 ) ≠ 0 ↔ 𝑇 ≠ 𝑍 ) ) |
| 6 | eqid | ⊢ ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ 𝑈 ) | |
| 7 | eqid | ⊢ ( BaseSet ‘ 𝑊 ) = ( BaseSet ‘ 𝑊 ) | |
| 8 | 6 7 3 | lnof | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → 𝑇 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 ) ) |
| 9 | 6 7 1 | nmoxr | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 ) ) → ( 𝑁 ‘ 𝑇 ) ∈ ℝ* ) |
| 10 | 6 7 1 | nmooge0 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 ) ) → 0 ≤ ( 𝑁 ‘ 𝑇 ) ) |
| 11 | 0xr | ⊢ 0 ∈ ℝ* | |
| 12 | xrlttri2 | ⊢ ( ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( ( 𝑁 ‘ 𝑇 ) ≠ 0 ↔ ( ( 𝑁 ‘ 𝑇 ) < 0 ∨ 0 < ( 𝑁 ‘ 𝑇 ) ) ) ) | |
| 13 | 11 12 | mpan2 | ⊢ ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ* → ( ( 𝑁 ‘ 𝑇 ) ≠ 0 ↔ ( ( 𝑁 ‘ 𝑇 ) < 0 ∨ 0 < ( 𝑁 ‘ 𝑇 ) ) ) ) |
| 14 | 13 | adantr | ⊢ ( ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ* ∧ 0 ≤ ( 𝑁 ‘ 𝑇 ) ) → ( ( 𝑁 ‘ 𝑇 ) ≠ 0 ↔ ( ( 𝑁 ‘ 𝑇 ) < 0 ∨ 0 < ( 𝑁 ‘ 𝑇 ) ) ) ) |
| 15 | xrlenlt | ⊢ ( ( 0 ∈ ℝ* ∧ ( 𝑁 ‘ 𝑇 ) ∈ ℝ* ) → ( 0 ≤ ( 𝑁 ‘ 𝑇 ) ↔ ¬ ( 𝑁 ‘ 𝑇 ) < 0 ) ) | |
| 16 | 11 15 | mpan | ⊢ ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ* → ( 0 ≤ ( 𝑁 ‘ 𝑇 ) ↔ ¬ ( 𝑁 ‘ 𝑇 ) < 0 ) ) |
| 17 | 16 | biimpa | ⊢ ( ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ* ∧ 0 ≤ ( 𝑁 ‘ 𝑇 ) ) → ¬ ( 𝑁 ‘ 𝑇 ) < 0 ) |
| 18 | biorf | ⊢ ( ¬ ( 𝑁 ‘ 𝑇 ) < 0 → ( 0 < ( 𝑁 ‘ 𝑇 ) ↔ ( ( 𝑁 ‘ 𝑇 ) < 0 ∨ 0 < ( 𝑁 ‘ 𝑇 ) ) ) ) | |
| 19 | 17 18 | syl | ⊢ ( ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ* ∧ 0 ≤ ( 𝑁 ‘ 𝑇 ) ) → ( 0 < ( 𝑁 ‘ 𝑇 ) ↔ ( ( 𝑁 ‘ 𝑇 ) < 0 ∨ 0 < ( 𝑁 ‘ 𝑇 ) ) ) ) |
| 20 | 14 19 | bitr4d | ⊢ ( ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ* ∧ 0 ≤ ( 𝑁 ‘ 𝑇 ) ) → ( ( 𝑁 ‘ 𝑇 ) ≠ 0 ↔ 0 < ( 𝑁 ‘ 𝑇 ) ) ) |
| 21 | 9 10 20 | syl2anc | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 ) ) → ( ( 𝑁 ‘ 𝑇 ) ≠ 0 ↔ 0 < ( 𝑁 ‘ 𝑇 ) ) ) |
| 22 | 8 21 | syld3an3 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → ( ( 𝑁 ‘ 𝑇 ) ≠ 0 ↔ 0 < ( 𝑁 ‘ 𝑇 ) ) ) |
| 23 | 5 22 | bitr3d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → ( 𝑇 ≠ 𝑍 ↔ 0 < ( 𝑁 ‘ 𝑇 ) ) ) |