This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of a nonzero linear operator contains a nonzero vector. (Contributed by NM, 15-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lnon0.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| lnon0.6 | ⊢ 𝑍 = ( 0vec ‘ 𝑈 ) | ||
| lnon0.0 | ⊢ 𝑂 = ( 𝑈 0op 𝑊 ) | ||
| lnon0.7 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) | ||
| Assertion | lnon0 | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) ∧ 𝑇 ≠ 𝑂 ) → ∃ 𝑥 ∈ 𝑋 𝑥 ≠ 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnon0.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | lnon0.6 | ⊢ 𝑍 = ( 0vec ‘ 𝑈 ) | |
| 3 | lnon0.0 | ⊢ 𝑂 = ( 𝑈 0op 𝑊 ) | |
| 4 | lnon0.7 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) | |
| 5 | ralnex | ⊢ ( ∀ 𝑥 ∈ 𝑋 ¬ 𝑥 ≠ 𝑍 ↔ ¬ ∃ 𝑥 ∈ 𝑋 𝑥 ≠ 𝑍 ) | |
| 6 | nne | ⊢ ( ¬ 𝑥 ≠ 𝑍 ↔ 𝑥 = 𝑍 ) | |
| 7 | 6 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝑋 ¬ 𝑥 ≠ 𝑍 ↔ ∀ 𝑥 ∈ 𝑋 𝑥 = 𝑍 ) |
| 8 | 5 7 | bitr3i | ⊢ ( ¬ ∃ 𝑥 ∈ 𝑋 𝑥 ≠ 𝑍 ↔ ∀ 𝑥 ∈ 𝑋 𝑥 = 𝑍 ) |
| 9 | fveq2 | ⊢ ( 𝑥 = 𝑍 → ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑍 ) ) | |
| 10 | eqid | ⊢ ( BaseSet ‘ 𝑊 ) = ( BaseSet ‘ 𝑊 ) | |
| 11 | eqid | ⊢ ( 0vec ‘ 𝑊 ) = ( 0vec ‘ 𝑊 ) | |
| 12 | 1 10 2 11 4 | lno0 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → ( 𝑇 ‘ 𝑍 ) = ( 0vec ‘ 𝑊 ) ) |
| 13 | 9 12 | sylan9eqr | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) ∧ 𝑥 = 𝑍 ) → ( 𝑇 ‘ 𝑥 ) = ( 0vec ‘ 𝑊 ) ) |
| 14 | 13 | ex | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → ( 𝑥 = 𝑍 → ( 𝑇 ‘ 𝑥 ) = ( 0vec ‘ 𝑊 ) ) ) |
| 15 | 14 | ralimdv | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → ( ∀ 𝑥 ∈ 𝑋 𝑥 = 𝑍 → ∀ 𝑥 ∈ 𝑋 ( 𝑇 ‘ 𝑥 ) = ( 0vec ‘ 𝑊 ) ) ) |
| 16 | 1 10 4 | lnof | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → 𝑇 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ) |
| 17 | 16 | ffnd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → 𝑇 Fn 𝑋 ) |
| 18 | 15 17 | jctild | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → ( ∀ 𝑥 ∈ 𝑋 𝑥 = 𝑍 → ( 𝑇 Fn 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑇 ‘ 𝑥 ) = ( 0vec ‘ 𝑊 ) ) ) ) |
| 19 | fconstfv | ⊢ ( 𝑇 : 𝑋 ⟶ { ( 0vec ‘ 𝑊 ) } ↔ ( 𝑇 Fn 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑇 ‘ 𝑥 ) = ( 0vec ‘ 𝑊 ) ) ) | |
| 20 | fvex | ⊢ ( 0vec ‘ 𝑊 ) ∈ V | |
| 21 | 20 | fconst2 | ⊢ ( 𝑇 : 𝑋 ⟶ { ( 0vec ‘ 𝑊 ) } ↔ 𝑇 = ( 𝑋 × { ( 0vec ‘ 𝑊 ) } ) ) |
| 22 | 19 21 | bitr3i | ⊢ ( ( 𝑇 Fn 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑇 ‘ 𝑥 ) = ( 0vec ‘ 𝑊 ) ) ↔ 𝑇 = ( 𝑋 × { ( 0vec ‘ 𝑊 ) } ) ) |
| 23 | 18 22 | imbitrdi | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → ( ∀ 𝑥 ∈ 𝑋 𝑥 = 𝑍 → 𝑇 = ( 𝑋 × { ( 0vec ‘ 𝑊 ) } ) ) ) |
| 24 | 1 11 3 | 0ofval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → 𝑂 = ( 𝑋 × { ( 0vec ‘ 𝑊 ) } ) ) |
| 25 | 24 | 3adant3 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → 𝑂 = ( 𝑋 × { ( 0vec ‘ 𝑊 ) } ) ) |
| 26 | 25 | eqeq2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → ( 𝑇 = 𝑂 ↔ 𝑇 = ( 𝑋 × { ( 0vec ‘ 𝑊 ) } ) ) ) |
| 27 | 23 26 | sylibrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → ( ∀ 𝑥 ∈ 𝑋 𝑥 = 𝑍 → 𝑇 = 𝑂 ) ) |
| 28 | 8 27 | biimtrid | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → ( ¬ ∃ 𝑥 ∈ 𝑋 𝑥 ≠ 𝑍 → 𝑇 = 𝑂 ) ) |
| 29 | 28 | necon1ad | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → ( 𝑇 ≠ 𝑂 → ∃ 𝑥 ∈ 𝑋 𝑥 ≠ 𝑍 ) ) |
| 30 | 29 | imp | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) ∧ 𝑇 ≠ 𝑂 ) → ∃ 𝑥 ∈ 𝑋 𝑥 ≠ 𝑍 ) |