This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a nonzero linear operator is positive. (Contributed by NM, 10-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmlnogt0.3 | |- N = ( U normOpOLD W ) |
|
| nmlnogt0.0 | |- Z = ( U 0op W ) |
||
| nmlnogt0.7 | |- L = ( U LnOp W ) |
||
| Assertion | nmlnogt0 | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( T =/= Z <-> 0 < ( N ` T ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmlnogt0.3 | |- N = ( U normOpOLD W ) |
|
| 2 | nmlnogt0.0 | |- Z = ( U 0op W ) |
|
| 3 | nmlnogt0.7 | |- L = ( U LnOp W ) |
|
| 4 | 1 2 3 | nmlno0 | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( ( N ` T ) = 0 <-> T = Z ) ) |
| 5 | 4 | necon3bid | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( ( N ` T ) =/= 0 <-> T =/= Z ) ) |
| 6 | eqid | |- ( BaseSet ` U ) = ( BaseSet ` U ) |
|
| 7 | eqid | |- ( BaseSet ` W ) = ( BaseSet ` W ) |
|
| 8 | 6 7 3 | lnof | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> T : ( BaseSet ` U ) --> ( BaseSet ` W ) ) |
| 9 | 6 7 1 | nmoxr | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : ( BaseSet ` U ) --> ( BaseSet ` W ) ) -> ( N ` T ) e. RR* ) |
| 10 | 6 7 1 | nmooge0 | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : ( BaseSet ` U ) --> ( BaseSet ` W ) ) -> 0 <_ ( N ` T ) ) |
| 11 | 0xr | |- 0 e. RR* |
|
| 12 | xrlttri2 | |- ( ( ( N ` T ) e. RR* /\ 0 e. RR* ) -> ( ( N ` T ) =/= 0 <-> ( ( N ` T ) < 0 \/ 0 < ( N ` T ) ) ) ) |
|
| 13 | 11 12 | mpan2 | |- ( ( N ` T ) e. RR* -> ( ( N ` T ) =/= 0 <-> ( ( N ` T ) < 0 \/ 0 < ( N ` T ) ) ) ) |
| 14 | 13 | adantr | |- ( ( ( N ` T ) e. RR* /\ 0 <_ ( N ` T ) ) -> ( ( N ` T ) =/= 0 <-> ( ( N ` T ) < 0 \/ 0 < ( N ` T ) ) ) ) |
| 15 | xrlenlt | |- ( ( 0 e. RR* /\ ( N ` T ) e. RR* ) -> ( 0 <_ ( N ` T ) <-> -. ( N ` T ) < 0 ) ) |
|
| 16 | 11 15 | mpan | |- ( ( N ` T ) e. RR* -> ( 0 <_ ( N ` T ) <-> -. ( N ` T ) < 0 ) ) |
| 17 | 16 | biimpa | |- ( ( ( N ` T ) e. RR* /\ 0 <_ ( N ` T ) ) -> -. ( N ` T ) < 0 ) |
| 18 | biorf | |- ( -. ( N ` T ) < 0 -> ( 0 < ( N ` T ) <-> ( ( N ` T ) < 0 \/ 0 < ( N ` T ) ) ) ) |
|
| 19 | 17 18 | syl | |- ( ( ( N ` T ) e. RR* /\ 0 <_ ( N ` T ) ) -> ( 0 < ( N ` T ) <-> ( ( N ` T ) < 0 \/ 0 < ( N ` T ) ) ) ) |
| 20 | 14 19 | bitr4d | |- ( ( ( N ` T ) e. RR* /\ 0 <_ ( N ` T ) ) -> ( ( N ` T ) =/= 0 <-> 0 < ( N ` T ) ) ) |
| 21 | 9 10 20 | syl2anc | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : ( BaseSet ` U ) --> ( BaseSet ` W ) ) -> ( ( N ` T ) =/= 0 <-> 0 < ( N ` T ) ) ) |
| 22 | 8 21 | syld3an3 | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( ( N ` T ) =/= 0 <-> 0 < ( N ` T ) ) ) |
| 23 | 5 22 | bitr3d | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( T =/= Z <-> 0 < ( N ` T ) ) ) |