This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lower bound for a functional norm. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmfnlb | ⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ 𝐴 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( normfn ‘ 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmfnsetre | ⊢ ( 𝑇 : ℋ ⟶ ℂ → { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ⊆ ℝ ) | |
| 2 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 3 | 1 2 | sstrdi | ⊢ ( 𝑇 : ℋ ⟶ ℂ → { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ⊆ ℝ* ) |
| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ 𝐴 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ⊆ ℝ* ) |
| 5 | fveq2 | ⊢ ( 𝑦 = 𝐴 → ( normℎ ‘ 𝑦 ) = ( normℎ ‘ 𝐴 ) ) | |
| 6 | 5 | breq1d | ⊢ ( 𝑦 = 𝐴 → ( ( normℎ ‘ 𝑦 ) ≤ 1 ↔ ( normℎ ‘ 𝐴 ) ≤ 1 ) ) |
| 7 | 2fveq3 | ⊢ ( 𝑦 = 𝐴 → ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) = ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ) | |
| 8 | 7 | eqeq2d | ⊢ ( 𝑦 = 𝐴 → ( ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ↔ ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) = ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) |
| 9 | 6 8 | anbi12d | ⊢ ( 𝑦 = 𝐴 → ( ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) ↔ ( ( normℎ ‘ 𝐴 ) ≤ 1 ∧ ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) = ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) ) |
| 10 | eqid | ⊢ ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) = ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) | |
| 11 | 10 | biantru | ⊢ ( ( normℎ ‘ 𝐴 ) ≤ 1 ↔ ( ( normℎ ‘ 𝐴 ) ≤ 1 ∧ ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) = ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) |
| 12 | 9 11 | bitr4di | ⊢ ( 𝑦 = 𝐴 → ( ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) ↔ ( normℎ ‘ 𝐴 ) ≤ 1 ) ) |
| 13 | 12 | rspcev | ⊢ ( ( 𝐴 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 14 | fvex | ⊢ ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ V | |
| 15 | eqeq1 | ⊢ ( 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) → ( 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ↔ ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) | |
| 16 | 15 | anbi2d | ⊢ ( 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) → ( ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) ↔ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
| 17 | 16 | rexbidv | ⊢ ( 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) → ( ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) ↔ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
| 18 | 14 17 | elab | ⊢ ( ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ↔ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 19 | 13 18 | sylibr | ⊢ ( ( 𝐴 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ) |
| 20 | 19 | 3adant1 | ⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ 𝐴 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ) |
| 21 | supxrub | ⊢ ( ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ⊆ ℝ* ∧ ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ) → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) ) | |
| 22 | 4 20 21 | syl2anc | ⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ 𝐴 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) ) |
| 23 | nmfnval | ⊢ ( 𝑇 : ℋ ⟶ ℂ → ( normfn ‘ 𝑇 ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) ) | |
| 24 | 23 | 3ad2ant1 | ⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ 𝐴 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( normfn ‘ 𝑇 ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) ) |
| 25 | 22 24 | breqtrrd | ⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ 𝐴 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( normfn ‘ 𝑇 ) ) |