This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of a linear Hilbert space functional at zero is zero. Remark in Beran p. 99. (Contributed by NM, 11-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lnfnl.1 | ⊢ 𝑇 ∈ LinFn | |
| Assertion | lnfn0i | ⊢ ( 𝑇 ‘ 0ℎ ) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnfnl.1 | ⊢ 𝑇 ∈ LinFn | |
| 2 | ax-hv0cl | ⊢ 0ℎ ∈ ℋ | |
| 3 | 1 | lnfnfi | ⊢ 𝑇 : ℋ ⟶ ℂ |
| 4 | 3 | ffvelcdmi | ⊢ ( 0ℎ ∈ ℋ → ( 𝑇 ‘ 0ℎ ) ∈ ℂ ) |
| 5 | 2 4 | ax-mp | ⊢ ( 𝑇 ‘ 0ℎ ) ∈ ℂ |
| 6 | 5 5 | pncan3oi | ⊢ ( ( ( 𝑇 ‘ 0ℎ ) + ( 𝑇 ‘ 0ℎ ) ) − ( 𝑇 ‘ 0ℎ ) ) = ( 𝑇 ‘ 0ℎ ) |
| 7 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 8 | 1 | lnfnli | ⊢ ( ( 1 ∈ ℂ ∧ 0ℎ ∈ ℋ ∧ 0ℎ ∈ ℋ ) → ( 𝑇 ‘ ( ( 1 ·ℎ 0ℎ ) +ℎ 0ℎ ) ) = ( ( 1 · ( 𝑇 ‘ 0ℎ ) ) + ( 𝑇 ‘ 0ℎ ) ) ) |
| 9 | 7 2 2 8 | mp3an | ⊢ ( 𝑇 ‘ ( ( 1 ·ℎ 0ℎ ) +ℎ 0ℎ ) ) = ( ( 1 · ( 𝑇 ‘ 0ℎ ) ) + ( 𝑇 ‘ 0ℎ ) ) |
| 10 | 7 2 | hvmulcli | ⊢ ( 1 ·ℎ 0ℎ ) ∈ ℋ |
| 11 | ax-hvaddid | ⊢ ( ( 1 ·ℎ 0ℎ ) ∈ ℋ → ( ( 1 ·ℎ 0ℎ ) +ℎ 0ℎ ) = ( 1 ·ℎ 0ℎ ) ) | |
| 12 | 10 11 | ax-mp | ⊢ ( ( 1 ·ℎ 0ℎ ) +ℎ 0ℎ ) = ( 1 ·ℎ 0ℎ ) |
| 13 | ax-hvmulid | ⊢ ( 0ℎ ∈ ℋ → ( 1 ·ℎ 0ℎ ) = 0ℎ ) | |
| 14 | 2 13 | ax-mp | ⊢ ( 1 ·ℎ 0ℎ ) = 0ℎ |
| 15 | 12 14 | eqtri | ⊢ ( ( 1 ·ℎ 0ℎ ) +ℎ 0ℎ ) = 0ℎ |
| 16 | 15 | fveq2i | ⊢ ( 𝑇 ‘ ( ( 1 ·ℎ 0ℎ ) +ℎ 0ℎ ) ) = ( 𝑇 ‘ 0ℎ ) |
| 17 | 9 16 | eqtr3i | ⊢ ( ( 1 · ( 𝑇 ‘ 0ℎ ) ) + ( 𝑇 ‘ 0ℎ ) ) = ( 𝑇 ‘ 0ℎ ) |
| 18 | 5 | mullidi | ⊢ ( 1 · ( 𝑇 ‘ 0ℎ ) ) = ( 𝑇 ‘ 0ℎ ) |
| 19 | 18 | oveq1i | ⊢ ( ( 1 · ( 𝑇 ‘ 0ℎ ) ) + ( 𝑇 ‘ 0ℎ ) ) = ( ( 𝑇 ‘ 0ℎ ) + ( 𝑇 ‘ 0ℎ ) ) |
| 20 | 17 19 | eqtr3i | ⊢ ( 𝑇 ‘ 0ℎ ) = ( ( 𝑇 ‘ 0ℎ ) + ( 𝑇 ‘ 0ℎ ) ) |
| 21 | 20 | oveq1i | ⊢ ( ( 𝑇 ‘ 0ℎ ) − ( 𝑇 ‘ 0ℎ ) ) = ( ( ( 𝑇 ‘ 0ℎ ) + ( 𝑇 ‘ 0ℎ ) ) − ( 𝑇 ‘ 0ℎ ) ) |
| 22 | 5 | subidi | ⊢ ( ( 𝑇 ‘ 0ℎ ) − ( 𝑇 ‘ 0ℎ ) ) = 0 |
| 23 | 21 22 | eqtr3i | ⊢ ( ( ( 𝑇 ‘ 0ℎ ) + ( 𝑇 ‘ 0ℎ ) ) − ( 𝑇 ‘ 0ℎ ) ) = 0 |
| 24 | 6 23 | eqtr3i | ⊢ ( 𝑇 ‘ 0ℎ ) = 0 |