This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a continuous linear Hilbert space functional exists. Theorem 3.5(i) of Beran p. 99. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmcfnex | ⊢ ( ( 𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ) → ( normfn ‘ 𝑇 ) ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | ⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) ↔ ( 𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ) ) | |
| 2 | fveq2 | ⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) → ( normfn ‘ 𝑇 ) = ( normfn ‘ if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ) ) | |
| 3 | 2 | eleq1d | ⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) → ( ( normfn ‘ 𝑇 ) ∈ ℝ ↔ ( normfn ‘ if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ) ∈ ℝ ) ) |
| 4 | 0lnfn | ⊢ ( ℋ × { 0 } ) ∈ LinFn | |
| 5 | 0cnfn | ⊢ ( ℋ × { 0 } ) ∈ ContFn | |
| 6 | elin | ⊢ ( ( ℋ × { 0 } ) ∈ ( LinFn ∩ ContFn ) ↔ ( ( ℋ × { 0 } ) ∈ LinFn ∧ ( ℋ × { 0 } ) ∈ ContFn ) ) | |
| 7 | 4 5 6 | mpbir2an | ⊢ ( ℋ × { 0 } ) ∈ ( LinFn ∩ ContFn ) |
| 8 | 7 | elimel | ⊢ if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ ( LinFn ∩ ContFn ) |
| 9 | elin | ⊢ ( if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ ( LinFn ∩ ContFn ) ↔ ( if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ LinFn ∧ if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ ContFn ) ) | |
| 10 | 8 9 | mpbi | ⊢ ( if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ LinFn ∧ if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ ContFn ) |
| 11 | 10 | simpli | ⊢ if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ LinFn |
| 12 | 10 | simpri | ⊢ if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ ContFn |
| 13 | 11 12 | nmcfnexi | ⊢ ( normfn ‘ if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ) ∈ ℝ |
| 14 | 3 13 | dedth | ⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) → ( normfn ‘ 𝑇 ) ∈ ℝ ) |
| 15 | 1 14 | sylbir | ⊢ ( ( 𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ) → ( normfn ‘ 𝑇 ) ∈ ℝ ) |