This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero operator between two normed complex vector spaces. (Contributed by NM, 28-Nov-2007) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0oval.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 0oval.6 | ⊢ 𝑍 = ( 0vec ‘ 𝑊 ) | ||
| 0oval.0 | ⊢ 𝑂 = ( 𝑈 0op 𝑊 ) | ||
| Assertion | 0ofval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → 𝑂 = ( 𝑋 × { 𝑍 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0oval.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | 0oval.6 | ⊢ 𝑍 = ( 0vec ‘ 𝑊 ) | |
| 3 | 0oval.0 | ⊢ 𝑂 = ( 𝑈 0op 𝑊 ) | |
| 4 | fveq2 | ⊢ ( 𝑢 = 𝑈 → ( BaseSet ‘ 𝑢 ) = ( BaseSet ‘ 𝑈 ) ) | |
| 5 | 4 1 | eqtr4di | ⊢ ( 𝑢 = 𝑈 → ( BaseSet ‘ 𝑢 ) = 𝑋 ) |
| 6 | 5 | xpeq1d | ⊢ ( 𝑢 = 𝑈 → ( ( BaseSet ‘ 𝑢 ) × { ( 0vec ‘ 𝑤 ) } ) = ( 𝑋 × { ( 0vec ‘ 𝑤 ) } ) ) |
| 7 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( 0vec ‘ 𝑤 ) = ( 0vec ‘ 𝑊 ) ) | |
| 8 | 7 2 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( 0vec ‘ 𝑤 ) = 𝑍 ) |
| 9 | 8 | sneqd | ⊢ ( 𝑤 = 𝑊 → { ( 0vec ‘ 𝑤 ) } = { 𝑍 } ) |
| 10 | 9 | xpeq2d | ⊢ ( 𝑤 = 𝑊 → ( 𝑋 × { ( 0vec ‘ 𝑤 ) } ) = ( 𝑋 × { 𝑍 } ) ) |
| 11 | df-0o | ⊢ 0op = ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ ( ( BaseSet ‘ 𝑢 ) × { ( 0vec ‘ 𝑤 ) } ) ) | |
| 12 | 1 | fvexi | ⊢ 𝑋 ∈ V |
| 13 | snex | ⊢ { 𝑍 } ∈ V | |
| 14 | 12 13 | xpex | ⊢ ( 𝑋 × { 𝑍 } ) ∈ V |
| 15 | 6 10 11 14 | ovmpo | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑈 0op 𝑊 ) = ( 𝑋 × { 𝑍 } ) ) |
| 16 | 3 15 | eqtrid | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → 𝑂 = ( 𝑋 × { 𝑍 } ) ) |