This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nlfnval | ⊢ ( 𝑇 : ℋ ⟶ ℂ → ( null ‘ 𝑇 ) = ( ◡ 𝑇 “ { 0 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex | ⊢ ℂ ∈ V | |
| 2 | ax-hilex | ⊢ ℋ ∈ V | |
| 3 | 1 2 | elmap | ⊢ ( 𝑇 ∈ ( ℂ ↑m ℋ ) ↔ 𝑇 : ℋ ⟶ ℂ ) |
| 4 | cnvexg | ⊢ ( 𝑇 ∈ ( ℂ ↑m ℋ ) → ◡ 𝑇 ∈ V ) | |
| 5 | imaexg | ⊢ ( ◡ 𝑇 ∈ V → ( ◡ 𝑇 “ { 0 } ) ∈ V ) | |
| 6 | 4 5 | syl | ⊢ ( 𝑇 ∈ ( ℂ ↑m ℋ ) → ( ◡ 𝑇 “ { 0 } ) ∈ V ) |
| 7 | cnveq | ⊢ ( 𝑡 = 𝑇 → ◡ 𝑡 = ◡ 𝑇 ) | |
| 8 | 7 | imaeq1d | ⊢ ( 𝑡 = 𝑇 → ( ◡ 𝑡 “ { 0 } ) = ( ◡ 𝑇 “ { 0 } ) ) |
| 9 | df-nlfn | ⊢ null = ( 𝑡 ∈ ( ℂ ↑m ℋ ) ↦ ( ◡ 𝑡 “ { 0 } ) ) | |
| 10 | 8 9 | fvmptg | ⊢ ( ( 𝑇 ∈ ( ℂ ↑m ℋ ) ∧ ( ◡ 𝑇 “ { 0 } ) ∈ V ) → ( null ‘ 𝑇 ) = ( ◡ 𝑇 “ { 0 } ) ) |
| 11 | 6 10 | mpdan | ⊢ ( 𝑇 ∈ ( ℂ ↑m ℋ ) → ( null ‘ 𝑇 ) = ( ◡ 𝑇 “ { 0 } ) ) |
| 12 | 3 11 | sylbir | ⊢ ( 𝑇 : ℋ ⟶ ℂ → ( null ‘ 𝑇 ) = ( ◡ 𝑇 “ { 0 } ) ) |