This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of the neighborhoods of a set equals the topology's underlying set. (Contributed by FL, 18-Sep-2007) (Revised by Mario Carneiro, 9-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tpnei.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | neiuni | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → 𝑋 = ∪ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpnei.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | tpnei | ⊢ ( 𝐽 ∈ Top → ( 𝑆 ⊆ 𝑋 ↔ 𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 3 | 2 | biimpa | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → 𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 4 | elssuni | ⊢ ( 𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) → 𝑋 ⊆ ∪ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) | |
| 5 | 3 4 | syl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → 𝑋 ⊆ ∪ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 6 | 1 | neii1 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑥 ⊆ 𝑋 ) |
| 7 | 6 | ex | ⊢ ( 𝐽 ∈ Top → ( 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) → 𝑥 ⊆ 𝑋 ) ) |
| 8 | 7 | adantr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) → 𝑥 ⊆ 𝑋 ) ) |
| 9 | 8 | ralrimiv | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ∀ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) 𝑥 ⊆ 𝑋 ) |
| 10 | unissb | ⊢ ( ∪ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 ↔ ∀ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) 𝑥 ⊆ 𝑋 ) | |
| 11 | 9 10 | sylibr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ∪ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 ) |
| 12 | 5 11 | eqssd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → 𝑋 = ∪ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |