This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The power series variable function is injective if the base ring is nonzero. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mvrf.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| mvrf.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) | ||
| mvrf.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| mvrf.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| mvrf.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| mvrf1.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| mvrf1.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| mvrf1.n | ⊢ ( 𝜑 → 1 ≠ 0 ) | ||
| Assertion | mvrf1 | ⊢ ( 𝜑 → 𝑉 : 𝐼 –1-1→ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mvrf.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | mvrf.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) | |
| 3 | mvrf.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 4 | mvrf.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 5 | mvrf.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 6 | mvrf1.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 7 | mvrf1.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 8 | mvrf1.n | ⊢ ( 𝜑 → 1 ≠ 0 ) | |
| 9 | 1 2 3 4 5 | mvrf | ⊢ ( 𝜑 → 𝑉 : 𝐼 ⟶ 𝐵 ) |
| 10 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ∧ ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) ) ) → 1 ≠ 0 ) |
| 11 | simp2r | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ∧ ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) ) | |
| 12 | 11 | fveq1d | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ∧ ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → ( ( 𝑉 ‘ 𝑥 ) ‘ ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) ) = ( ( 𝑉 ‘ 𝑦 ) ‘ ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) ) ) |
| 13 | eqid | ⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
| 14 | 4 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ∧ ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → 𝐼 ∈ 𝑊 ) |
| 15 | 5 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ∧ ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → 𝑅 ∈ Ring ) |
| 16 | simp2ll | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ∧ ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → 𝑥 ∈ 𝐼 ) | |
| 17 | 2 13 6 7 14 15 16 | mvrid | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ∧ ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → ( ( 𝑉 ‘ 𝑥 ) ‘ ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) ) = 1 ) |
| 18 | simp2lr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ∧ ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → 𝑦 ∈ 𝐼 ) | |
| 19 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 20 | 13 | snifpsrbag | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 1 ∈ ℕ0 ) → ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
| 21 | 14 19 20 | sylancl | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ∧ ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
| 22 | 2 13 6 7 14 15 18 21 | mvrval2 | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ∧ ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → ( ( 𝑉 ‘ 𝑦 ) ‘ ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) ) = if ( ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑦 , 1 , 0 ) ) , 1 , 0 ) ) |
| 23 | 12 17 22 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ∧ ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → 1 = if ( ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑦 , 1 , 0 ) ) , 1 , 0 ) ) |
| 24 | simp3 | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ∧ ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → ¬ 𝑥 = 𝑦 ) | |
| 25 | mpteqb | ⊢ ( ∀ 𝑧 ∈ 𝐼 if ( 𝑧 = 𝑥 , 1 , 0 ) ∈ ℕ0 → ( ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑦 , 1 , 0 ) ) ↔ ∀ 𝑧 ∈ 𝐼 if ( 𝑧 = 𝑥 , 1 , 0 ) = if ( 𝑧 = 𝑦 , 1 , 0 ) ) ) | |
| 26 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 27 | 19 26 | ifcli | ⊢ if ( 𝑧 = 𝑥 , 1 , 0 ) ∈ ℕ0 |
| 28 | 27 | a1i | ⊢ ( 𝑧 ∈ 𝐼 → if ( 𝑧 = 𝑥 , 1 , 0 ) ∈ ℕ0 ) |
| 29 | 25 28 | mprg | ⊢ ( ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑦 , 1 , 0 ) ) ↔ ∀ 𝑧 ∈ 𝐼 if ( 𝑧 = 𝑥 , 1 , 0 ) = if ( 𝑧 = 𝑦 , 1 , 0 ) ) |
| 30 | iftrue | ⊢ ( 𝑧 = 𝑥 → if ( 𝑧 = 𝑥 , 1 , 0 ) = 1 ) | |
| 31 | eqeq1 | ⊢ ( 𝑧 = 𝑥 → ( 𝑧 = 𝑦 ↔ 𝑥 = 𝑦 ) ) | |
| 32 | 31 | ifbid | ⊢ ( 𝑧 = 𝑥 → if ( 𝑧 = 𝑦 , 1 , 0 ) = if ( 𝑥 = 𝑦 , 1 , 0 ) ) |
| 33 | 30 32 | eqeq12d | ⊢ ( 𝑧 = 𝑥 → ( if ( 𝑧 = 𝑥 , 1 , 0 ) = if ( 𝑧 = 𝑦 , 1 , 0 ) ↔ 1 = if ( 𝑥 = 𝑦 , 1 , 0 ) ) ) |
| 34 | 33 | rspcv | ⊢ ( 𝑥 ∈ 𝐼 → ( ∀ 𝑧 ∈ 𝐼 if ( 𝑧 = 𝑥 , 1 , 0 ) = if ( 𝑧 = 𝑦 , 1 , 0 ) → 1 = if ( 𝑥 = 𝑦 , 1 , 0 ) ) ) |
| 35 | 29 34 | biimtrid | ⊢ ( 𝑥 ∈ 𝐼 → ( ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑦 , 1 , 0 ) ) → 1 = if ( 𝑥 = 𝑦 , 1 , 0 ) ) ) |
| 36 | 16 35 | syl | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ∧ ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → ( ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑦 , 1 , 0 ) ) → 1 = if ( 𝑥 = 𝑦 , 1 , 0 ) ) ) |
| 37 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 38 | eqeq1 | ⊢ ( 1 = if ( 𝑥 = 𝑦 , 1 , 0 ) → ( 1 = 0 ↔ if ( 𝑥 = 𝑦 , 1 , 0 ) = 0 ) ) | |
| 39 | 38 | necon3abid | ⊢ ( 1 = if ( 𝑥 = 𝑦 , 1 , 0 ) → ( 1 ≠ 0 ↔ ¬ if ( 𝑥 = 𝑦 , 1 , 0 ) = 0 ) ) |
| 40 | 37 39 | mpbii | ⊢ ( 1 = if ( 𝑥 = 𝑦 , 1 , 0 ) → ¬ if ( 𝑥 = 𝑦 , 1 , 0 ) = 0 ) |
| 41 | iffalse | ⊢ ( ¬ 𝑥 = 𝑦 → if ( 𝑥 = 𝑦 , 1 , 0 ) = 0 ) | |
| 42 | 40 41 | nsyl2 | ⊢ ( 1 = if ( 𝑥 = 𝑦 , 1 , 0 ) → 𝑥 = 𝑦 ) |
| 43 | 36 42 | syl6 | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ∧ ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → ( ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑦 , 1 , 0 ) ) → 𝑥 = 𝑦 ) ) |
| 44 | 24 43 | mtod | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ∧ ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → ¬ ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑦 , 1 , 0 ) ) ) |
| 45 | iffalse | ⊢ ( ¬ ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑦 , 1 , 0 ) ) → if ( ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑦 , 1 , 0 ) ) , 1 , 0 ) = 0 ) | |
| 46 | 44 45 | syl | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ∧ ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → if ( ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑦 , 1 , 0 ) ) , 1 , 0 ) = 0 ) |
| 47 | 23 46 | eqtrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ∧ ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → 1 = 0 ) |
| 48 | 47 | 3expia | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ∧ ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) ) ) → ( ¬ 𝑥 = 𝑦 → 1 = 0 ) ) |
| 49 | 48 | necon1ad | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ∧ ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) ) ) → ( 1 ≠ 0 → 𝑥 = 𝑦 ) ) |
| 50 | 10 49 | mpd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ∧ ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) ) ) → 𝑥 = 𝑦 ) |
| 51 | 50 | expr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ) → ( ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 52 | 51 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ∀ 𝑦 ∈ 𝐼 ( ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 53 | dff13 | ⊢ ( 𝑉 : 𝐼 –1-1→ 𝐵 ↔ ( 𝑉 : 𝐼 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐼 ∀ 𝑦 ∈ 𝐼 ( ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) | |
| 54 | 9 52 53 | sylanbrc | ⊢ ( 𝜑 → 𝑉 : 𝐼 –1-1→ 𝐵 ) |