This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The X i -th coefficient of the term X i is 1 . (Contributed by Mario Carneiro, 7-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mvrfval.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) | |
| mvrfval.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | ||
| mvrfval.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| mvrfval.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| mvrfval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| mvrfval.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑌 ) | ||
| mvrval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) | ||
| Assertion | mvrid | ⊢ ( 𝜑 → ( ( 𝑉 ‘ 𝑋 ) ‘ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mvrfval.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) | |
| 2 | mvrfval.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
| 3 | mvrfval.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | mvrfval.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 5 | mvrfval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 6 | mvrfval.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑌 ) | |
| 7 | mvrval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) | |
| 8 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 9 | 2 | snifpsrbag | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 1 ∈ ℕ0 ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ 𝐷 ) |
| 10 | 5 8 9 | sylancl | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ 𝐷 ) |
| 11 | 1 2 3 4 5 6 7 10 | mvrval2 | ⊢ ( 𝜑 → ( ( 𝑉 ‘ 𝑋 ) ‘ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = if ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) ) |
| 12 | eqid | ⊢ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) | |
| 13 | 12 | iftruei | ⊢ if ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) = 1 |
| 14 | 11 13 | eqtrdi | ⊢ ( 𝜑 → ( ( 𝑉 ‘ 𝑋 ) ‘ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = 1 ) |