This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The power series variable function is injective if the base ring is nonzero. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mvrf.s | |- S = ( I mPwSer R ) |
|
| mvrf.v | |- V = ( I mVar R ) |
||
| mvrf.b | |- B = ( Base ` S ) |
||
| mvrf.i | |- ( ph -> I e. W ) |
||
| mvrf.r | |- ( ph -> R e. Ring ) |
||
| mvrf1.z | |- .0. = ( 0g ` R ) |
||
| mvrf1.o | |- .1. = ( 1r ` R ) |
||
| mvrf1.n | |- ( ph -> .1. =/= .0. ) |
||
| Assertion | mvrf1 | |- ( ph -> V : I -1-1-> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mvrf.s | |- S = ( I mPwSer R ) |
|
| 2 | mvrf.v | |- V = ( I mVar R ) |
|
| 3 | mvrf.b | |- B = ( Base ` S ) |
|
| 4 | mvrf.i | |- ( ph -> I e. W ) |
|
| 5 | mvrf.r | |- ( ph -> R e. Ring ) |
|
| 6 | mvrf1.z | |- .0. = ( 0g ` R ) |
|
| 7 | mvrf1.o | |- .1. = ( 1r ` R ) |
|
| 8 | mvrf1.n | |- ( ph -> .1. =/= .0. ) |
|
| 9 | 1 2 3 4 5 | mvrf | |- ( ph -> V : I --> B ) |
| 10 | 8 | adantr | |- ( ( ph /\ ( ( x e. I /\ y e. I ) /\ ( V ` x ) = ( V ` y ) ) ) -> .1. =/= .0. ) |
| 11 | simp2r | |- ( ( ph /\ ( ( x e. I /\ y e. I ) /\ ( V ` x ) = ( V ` y ) ) /\ -. x = y ) -> ( V ` x ) = ( V ` y ) ) |
|
| 12 | 11 | fveq1d | |- ( ( ph /\ ( ( x e. I /\ y e. I ) /\ ( V ` x ) = ( V ` y ) ) /\ -. x = y ) -> ( ( V ` x ) ` ( z e. I |-> if ( z = x , 1 , 0 ) ) ) = ( ( V ` y ) ` ( z e. I |-> if ( z = x , 1 , 0 ) ) ) ) |
| 13 | eqid | |- { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
|
| 14 | 4 | 3ad2ant1 | |- ( ( ph /\ ( ( x e. I /\ y e. I ) /\ ( V ` x ) = ( V ` y ) ) /\ -. x = y ) -> I e. W ) |
| 15 | 5 | 3ad2ant1 | |- ( ( ph /\ ( ( x e. I /\ y e. I ) /\ ( V ` x ) = ( V ` y ) ) /\ -. x = y ) -> R e. Ring ) |
| 16 | simp2ll | |- ( ( ph /\ ( ( x e. I /\ y e. I ) /\ ( V ` x ) = ( V ` y ) ) /\ -. x = y ) -> x e. I ) |
|
| 17 | 2 13 6 7 14 15 16 | mvrid | |- ( ( ph /\ ( ( x e. I /\ y e. I ) /\ ( V ` x ) = ( V ` y ) ) /\ -. x = y ) -> ( ( V ` x ) ` ( z e. I |-> if ( z = x , 1 , 0 ) ) ) = .1. ) |
| 18 | simp2lr | |- ( ( ph /\ ( ( x e. I /\ y e. I ) /\ ( V ` x ) = ( V ` y ) ) /\ -. x = y ) -> y e. I ) |
|
| 19 | 1nn0 | |- 1 e. NN0 |
|
| 20 | 13 | snifpsrbag | |- ( ( I e. W /\ 1 e. NN0 ) -> ( z e. I |-> if ( z = x , 1 , 0 ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
| 21 | 14 19 20 | sylancl | |- ( ( ph /\ ( ( x e. I /\ y e. I ) /\ ( V ` x ) = ( V ` y ) ) /\ -. x = y ) -> ( z e. I |-> if ( z = x , 1 , 0 ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
| 22 | 2 13 6 7 14 15 18 21 | mvrval2 | |- ( ( ph /\ ( ( x e. I /\ y e. I ) /\ ( V ` x ) = ( V ` y ) ) /\ -. x = y ) -> ( ( V ` y ) ` ( z e. I |-> if ( z = x , 1 , 0 ) ) ) = if ( ( z e. I |-> if ( z = x , 1 , 0 ) ) = ( z e. I |-> if ( z = y , 1 , 0 ) ) , .1. , .0. ) ) |
| 23 | 12 17 22 | 3eqtr3d | |- ( ( ph /\ ( ( x e. I /\ y e. I ) /\ ( V ` x ) = ( V ` y ) ) /\ -. x = y ) -> .1. = if ( ( z e. I |-> if ( z = x , 1 , 0 ) ) = ( z e. I |-> if ( z = y , 1 , 0 ) ) , .1. , .0. ) ) |
| 24 | simp3 | |- ( ( ph /\ ( ( x e. I /\ y e. I ) /\ ( V ` x ) = ( V ` y ) ) /\ -. x = y ) -> -. x = y ) |
|
| 25 | mpteqb | |- ( A. z e. I if ( z = x , 1 , 0 ) e. NN0 -> ( ( z e. I |-> if ( z = x , 1 , 0 ) ) = ( z e. I |-> if ( z = y , 1 , 0 ) ) <-> A. z e. I if ( z = x , 1 , 0 ) = if ( z = y , 1 , 0 ) ) ) |
|
| 26 | 0nn0 | |- 0 e. NN0 |
|
| 27 | 19 26 | ifcli | |- if ( z = x , 1 , 0 ) e. NN0 |
| 28 | 27 | a1i | |- ( z e. I -> if ( z = x , 1 , 0 ) e. NN0 ) |
| 29 | 25 28 | mprg | |- ( ( z e. I |-> if ( z = x , 1 , 0 ) ) = ( z e. I |-> if ( z = y , 1 , 0 ) ) <-> A. z e. I if ( z = x , 1 , 0 ) = if ( z = y , 1 , 0 ) ) |
| 30 | iftrue | |- ( z = x -> if ( z = x , 1 , 0 ) = 1 ) |
|
| 31 | eqeq1 | |- ( z = x -> ( z = y <-> x = y ) ) |
|
| 32 | 31 | ifbid | |- ( z = x -> if ( z = y , 1 , 0 ) = if ( x = y , 1 , 0 ) ) |
| 33 | 30 32 | eqeq12d | |- ( z = x -> ( if ( z = x , 1 , 0 ) = if ( z = y , 1 , 0 ) <-> 1 = if ( x = y , 1 , 0 ) ) ) |
| 34 | 33 | rspcv | |- ( x e. I -> ( A. z e. I if ( z = x , 1 , 0 ) = if ( z = y , 1 , 0 ) -> 1 = if ( x = y , 1 , 0 ) ) ) |
| 35 | 29 34 | biimtrid | |- ( x e. I -> ( ( z e. I |-> if ( z = x , 1 , 0 ) ) = ( z e. I |-> if ( z = y , 1 , 0 ) ) -> 1 = if ( x = y , 1 , 0 ) ) ) |
| 36 | 16 35 | syl | |- ( ( ph /\ ( ( x e. I /\ y e. I ) /\ ( V ` x ) = ( V ` y ) ) /\ -. x = y ) -> ( ( z e. I |-> if ( z = x , 1 , 0 ) ) = ( z e. I |-> if ( z = y , 1 , 0 ) ) -> 1 = if ( x = y , 1 , 0 ) ) ) |
| 37 | ax-1ne0 | |- 1 =/= 0 |
|
| 38 | eqeq1 | |- ( 1 = if ( x = y , 1 , 0 ) -> ( 1 = 0 <-> if ( x = y , 1 , 0 ) = 0 ) ) |
|
| 39 | 38 | necon3abid | |- ( 1 = if ( x = y , 1 , 0 ) -> ( 1 =/= 0 <-> -. if ( x = y , 1 , 0 ) = 0 ) ) |
| 40 | 37 39 | mpbii | |- ( 1 = if ( x = y , 1 , 0 ) -> -. if ( x = y , 1 , 0 ) = 0 ) |
| 41 | iffalse | |- ( -. x = y -> if ( x = y , 1 , 0 ) = 0 ) |
|
| 42 | 40 41 | nsyl2 | |- ( 1 = if ( x = y , 1 , 0 ) -> x = y ) |
| 43 | 36 42 | syl6 | |- ( ( ph /\ ( ( x e. I /\ y e. I ) /\ ( V ` x ) = ( V ` y ) ) /\ -. x = y ) -> ( ( z e. I |-> if ( z = x , 1 , 0 ) ) = ( z e. I |-> if ( z = y , 1 , 0 ) ) -> x = y ) ) |
| 44 | 24 43 | mtod | |- ( ( ph /\ ( ( x e. I /\ y e. I ) /\ ( V ` x ) = ( V ` y ) ) /\ -. x = y ) -> -. ( z e. I |-> if ( z = x , 1 , 0 ) ) = ( z e. I |-> if ( z = y , 1 , 0 ) ) ) |
| 45 | iffalse | |- ( -. ( z e. I |-> if ( z = x , 1 , 0 ) ) = ( z e. I |-> if ( z = y , 1 , 0 ) ) -> if ( ( z e. I |-> if ( z = x , 1 , 0 ) ) = ( z e. I |-> if ( z = y , 1 , 0 ) ) , .1. , .0. ) = .0. ) |
|
| 46 | 44 45 | syl | |- ( ( ph /\ ( ( x e. I /\ y e. I ) /\ ( V ` x ) = ( V ` y ) ) /\ -. x = y ) -> if ( ( z e. I |-> if ( z = x , 1 , 0 ) ) = ( z e. I |-> if ( z = y , 1 , 0 ) ) , .1. , .0. ) = .0. ) |
| 47 | 23 46 | eqtrd | |- ( ( ph /\ ( ( x e. I /\ y e. I ) /\ ( V ` x ) = ( V ` y ) ) /\ -. x = y ) -> .1. = .0. ) |
| 48 | 47 | 3expia | |- ( ( ph /\ ( ( x e. I /\ y e. I ) /\ ( V ` x ) = ( V ` y ) ) ) -> ( -. x = y -> .1. = .0. ) ) |
| 49 | 48 | necon1ad | |- ( ( ph /\ ( ( x e. I /\ y e. I ) /\ ( V ` x ) = ( V ` y ) ) ) -> ( .1. =/= .0. -> x = y ) ) |
| 50 | 10 49 | mpd | |- ( ( ph /\ ( ( x e. I /\ y e. I ) /\ ( V ` x ) = ( V ` y ) ) ) -> x = y ) |
| 51 | 50 | expr | |- ( ( ph /\ ( x e. I /\ y e. I ) ) -> ( ( V ` x ) = ( V ` y ) -> x = y ) ) |
| 52 | 51 | ralrimivva | |- ( ph -> A. x e. I A. y e. I ( ( V ` x ) = ( V ` y ) -> x = y ) ) |
| 53 | dff13 | |- ( V : I -1-1-> B <-> ( V : I --> B /\ A. x e. I A. y e. I ( ( V ` x ) = ( V ` y ) -> x = y ) ) ) |
|
| 54 | 9 52 53 | sylanbrc | |- ( ph -> V : I -1-1-> B ) |