This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition cancellation law for positive reals. Proposition 9-3.5(vi) of Gleason p. 123. (Contributed by NM, 9-Apr-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addcanpr | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( 𝐴 +P 𝐵 ) = ( 𝐴 +P 𝐶 ) → 𝐵 = 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addclpr | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 +P 𝐵 ) ∈ P ) | |
| 2 | eleq1 | ⊢ ( ( 𝐴 +P 𝐵 ) = ( 𝐴 +P 𝐶 ) → ( ( 𝐴 +P 𝐵 ) ∈ P ↔ ( 𝐴 +P 𝐶 ) ∈ P ) ) | |
| 3 | dmplp | ⊢ dom +P = ( P × P ) | |
| 4 | 0npr | ⊢ ¬ ∅ ∈ P | |
| 5 | 3 4 | ndmovrcl | ⊢ ( ( 𝐴 +P 𝐶 ) ∈ P → ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) ) |
| 6 | 2 5 | biimtrdi | ⊢ ( ( 𝐴 +P 𝐵 ) = ( 𝐴 +P 𝐶 ) → ( ( 𝐴 +P 𝐵 ) ∈ P → ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) ) ) |
| 7 | 1 6 | syl5com | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( 𝐴 +P 𝐵 ) = ( 𝐴 +P 𝐶 ) → ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) ) ) |
| 8 | ltapr | ⊢ ( 𝐴 ∈ P → ( 𝐵 <P 𝐶 ↔ ( 𝐴 +P 𝐵 ) <P ( 𝐴 +P 𝐶 ) ) ) | |
| 9 | ltapr | ⊢ ( 𝐴 ∈ P → ( 𝐶 <P 𝐵 ↔ ( 𝐴 +P 𝐶 ) <P ( 𝐴 +P 𝐵 ) ) ) | |
| 10 | 8 9 | orbi12d | ⊢ ( 𝐴 ∈ P → ( ( 𝐵 <P 𝐶 ∨ 𝐶 <P 𝐵 ) ↔ ( ( 𝐴 +P 𝐵 ) <P ( 𝐴 +P 𝐶 ) ∨ ( 𝐴 +P 𝐶 ) <P ( 𝐴 +P 𝐵 ) ) ) ) |
| 11 | 10 | notbid | ⊢ ( 𝐴 ∈ P → ( ¬ ( 𝐵 <P 𝐶 ∨ 𝐶 <P 𝐵 ) ↔ ¬ ( ( 𝐴 +P 𝐵 ) <P ( 𝐴 +P 𝐶 ) ∨ ( 𝐴 +P 𝐶 ) <P ( 𝐴 +P 𝐵 ) ) ) ) |
| 12 | 11 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) ) → ( ¬ ( 𝐵 <P 𝐶 ∨ 𝐶 <P 𝐵 ) ↔ ¬ ( ( 𝐴 +P 𝐵 ) <P ( 𝐴 +P 𝐶 ) ∨ ( 𝐴 +P 𝐶 ) <P ( 𝐴 +P 𝐵 ) ) ) ) |
| 13 | ltsopr | ⊢ <P Or P | |
| 14 | sotrieq | ⊢ ( ( <P Or P ∧ ( 𝐵 ∈ P ∧ 𝐶 ∈ P ) ) → ( 𝐵 = 𝐶 ↔ ¬ ( 𝐵 <P 𝐶 ∨ 𝐶 <P 𝐵 ) ) ) | |
| 15 | 13 14 | mpan | ⊢ ( ( 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝐵 = 𝐶 ↔ ¬ ( 𝐵 <P 𝐶 ∨ 𝐶 <P 𝐵 ) ) ) |
| 16 | 15 | ad2ant2l | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) ) → ( 𝐵 = 𝐶 ↔ ¬ ( 𝐵 <P 𝐶 ∨ 𝐶 <P 𝐵 ) ) ) |
| 17 | addclpr | ⊢ ( ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) → ( 𝐴 +P 𝐶 ) ∈ P ) | |
| 18 | sotrieq | ⊢ ( ( <P Or P ∧ ( ( 𝐴 +P 𝐵 ) ∈ P ∧ ( 𝐴 +P 𝐶 ) ∈ P ) ) → ( ( 𝐴 +P 𝐵 ) = ( 𝐴 +P 𝐶 ) ↔ ¬ ( ( 𝐴 +P 𝐵 ) <P ( 𝐴 +P 𝐶 ) ∨ ( 𝐴 +P 𝐶 ) <P ( 𝐴 +P 𝐵 ) ) ) ) | |
| 19 | 13 18 | mpan | ⊢ ( ( ( 𝐴 +P 𝐵 ) ∈ P ∧ ( 𝐴 +P 𝐶 ) ∈ P ) → ( ( 𝐴 +P 𝐵 ) = ( 𝐴 +P 𝐶 ) ↔ ¬ ( ( 𝐴 +P 𝐵 ) <P ( 𝐴 +P 𝐶 ) ∨ ( 𝐴 +P 𝐶 ) <P ( 𝐴 +P 𝐵 ) ) ) ) |
| 20 | 1 17 19 | syl2an | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) ) → ( ( 𝐴 +P 𝐵 ) = ( 𝐴 +P 𝐶 ) ↔ ¬ ( ( 𝐴 +P 𝐵 ) <P ( 𝐴 +P 𝐶 ) ∨ ( 𝐴 +P 𝐶 ) <P ( 𝐴 +P 𝐵 ) ) ) ) |
| 21 | 12 16 20 | 3bitr4d | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) ) → ( 𝐵 = 𝐶 ↔ ( 𝐴 +P 𝐵 ) = ( 𝐴 +P 𝐶 ) ) ) |
| 22 | 21 | exbiri | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) → ( ( 𝐴 +P 𝐵 ) = ( 𝐴 +P 𝐶 ) → 𝐵 = 𝐶 ) ) ) |
| 23 | 7 22 | syld | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( 𝐴 +P 𝐵 ) = ( 𝐴 +P 𝐶 ) → ( ( 𝐴 +P 𝐵 ) = ( 𝐴 +P 𝐶 ) → 𝐵 = 𝐶 ) ) ) |
| 24 | 23 | pm2.43d | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( 𝐴 +P 𝐵 ) = ( 𝐴 +P 𝐶 ) → 𝐵 = 𝐶 ) ) |