This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 23-Jul-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2ecoptocl.1 | ⊢ 𝑆 = ( ( 𝐶 × 𝐷 ) / 𝑅 ) | |
| 2ecoptocl.2 | ⊢ ( [ 〈 𝑥 , 𝑦 〉 ] 𝑅 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| 2ecoptocl.3 | ⊢ ( [ 〈 𝑧 , 𝑤 〉 ] 𝑅 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | ||
| 2ecoptocl.4 | ⊢ ( ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷 ) ) → 𝜑 ) | ||
| Assertion | 2ecoptocl | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ecoptocl.1 | ⊢ 𝑆 = ( ( 𝐶 × 𝐷 ) / 𝑅 ) | |
| 2 | 2ecoptocl.2 | ⊢ ( [ 〈 𝑥 , 𝑦 〉 ] 𝑅 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | 2ecoptocl.3 | ⊢ ( [ 〈 𝑧 , 𝑤 〉 ] 𝑅 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | |
| 4 | 2ecoptocl.4 | ⊢ ( ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷 ) ) → 𝜑 ) | |
| 5 | 3 | imbi2d | ⊢ ( [ 〈 𝑧 , 𝑤 〉 ] 𝑅 = 𝐵 → ( ( 𝐴 ∈ 𝑆 → 𝜓 ) ↔ ( 𝐴 ∈ 𝑆 → 𝜒 ) ) ) |
| 6 | 2 | imbi2d | ⊢ ( [ 〈 𝑥 , 𝑦 〉 ] 𝑅 = 𝐴 → ( ( ( 𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷 ) → 𝜑 ) ↔ ( ( 𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷 ) → 𝜓 ) ) ) |
| 7 | 4 | ex | ⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷 ) → 𝜑 ) ) |
| 8 | 1 6 7 | ecoptocl | ⊢ ( 𝐴 ∈ 𝑆 → ( ( 𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷 ) → 𝜓 ) ) |
| 9 | 8 | com12 | ⊢ ( ( 𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷 ) → ( 𝐴 ∈ 𝑆 → 𝜓 ) ) |
| 10 | 1 5 9 | ecoptocl | ⊢ ( 𝐵 ∈ 𝑆 → ( 𝐴 ∈ 𝑆 → 𝜒 ) ) |
| 11 | 10 | impcom | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → 𝜒 ) |