This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The map from x to n x for a fixed positive integer n is a monoid homomorphism if the monoid is commutative. (Contributed by Mario Carneiro, 4-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgmhm.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mulgmhm.m | ⊢ · = ( .g ‘ 𝐺 ) | ||
| Assertion | mulgmhm | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) ∈ ( 𝐺 MndHom 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgmhm.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mulgmhm.m | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | cmnmnd | ⊢ ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0 ) → 𝐺 ∈ Mnd ) |
| 5 | 1 2 | mulgnn0cl | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑀 ∈ ℕ0 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑀 · 𝑥 ) ∈ 𝐵 ) |
| 6 | 3 5 | syl3an1 | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑀 · 𝑥 ) ∈ 𝐵 ) |
| 7 | 6 | 3expa | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑀 · 𝑥 ) ∈ 𝐵 ) |
| 8 | 7 | fmpttd | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) : 𝐵 ⟶ 𝐵 ) |
| 9 | 3anass | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ↔ ( 𝑀 ∈ ℕ0 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ) | |
| 10 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 11 | 1 2 10 | mulgnn0di | ⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑀 · ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( ( 𝑀 · 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑀 · 𝑧 ) ) ) |
| 12 | 9 11 | sylan2br | ⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ) → ( 𝑀 · ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( ( 𝑀 · 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑀 · 𝑧 ) ) ) |
| 13 | 12 | anassrs | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑀 · ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( ( 𝑀 · 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑀 · 𝑧 ) ) ) |
| 14 | 1 10 | mndcl | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝐵 ) |
| 15 | 14 | 3expb | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝐵 ) |
| 16 | 4 15 | sylan | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝐵 ) |
| 17 | oveq2 | ⊢ ( 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) → ( 𝑀 · 𝑥 ) = ( 𝑀 · ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) | |
| 18 | eqid | ⊢ ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) | |
| 19 | ovex | ⊢ ( 𝑀 · ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ V | |
| 20 | 17 18 19 | fvmpt | ⊢ ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( 𝑀 · ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 21 | 16 20 | syl | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( 𝑀 · ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 22 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑀 · 𝑥 ) = ( 𝑀 · 𝑦 ) ) | |
| 23 | ovex | ⊢ ( 𝑀 · 𝑦 ) ∈ V | |
| 24 | 22 18 23 | fvmpt | ⊢ ( 𝑦 ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) ‘ 𝑦 ) = ( 𝑀 · 𝑦 ) ) |
| 25 | oveq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝑀 · 𝑥 ) = ( 𝑀 · 𝑧 ) ) | |
| 26 | ovex | ⊢ ( 𝑀 · 𝑧 ) ∈ V | |
| 27 | 25 18 26 | fvmpt | ⊢ ( 𝑧 ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) ‘ 𝑧 ) = ( 𝑀 · 𝑧 ) ) |
| 28 | 24 27 | oveqan12d | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) ‘ 𝑧 ) ) = ( ( 𝑀 · 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑀 · 𝑧 ) ) ) |
| 29 | 28 | adantl | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) ‘ 𝑧 ) ) = ( ( 𝑀 · 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑀 · 𝑧 ) ) ) |
| 30 | 13 21 29 | 3eqtr4d | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) ‘ 𝑧 ) ) ) |
| 31 | 30 | ralrimivva | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0 ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) ‘ 𝑧 ) ) ) |
| 32 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 33 | 1 32 | mndidcl | ⊢ ( 𝐺 ∈ Mnd → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 34 | oveq2 | ⊢ ( 𝑥 = ( 0g ‘ 𝐺 ) → ( 𝑀 · 𝑥 ) = ( 𝑀 · ( 0g ‘ 𝐺 ) ) ) | |
| 35 | ovex | ⊢ ( 𝑀 · ( 0g ‘ 𝐺 ) ) ∈ V | |
| 36 | 34 18 35 | fvmpt | ⊢ ( ( 0g ‘ 𝐺 ) ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) ‘ ( 0g ‘ 𝐺 ) ) = ( 𝑀 · ( 0g ‘ 𝐺 ) ) ) |
| 37 | 4 33 36 | 3syl | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) ‘ ( 0g ‘ 𝐺 ) ) = ( 𝑀 · ( 0g ‘ 𝐺 ) ) ) |
| 38 | 1 2 32 | mulgnn0z | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑀 ∈ ℕ0 ) → ( 𝑀 · ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
| 39 | 3 38 | sylan | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0 ) → ( 𝑀 · ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
| 40 | 37 39 | eqtrd | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) ‘ ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
| 41 | 8 31 40 | 3jca | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) : 𝐵 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) ‘ 𝑧 ) ) ∧ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) ‘ ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) ) |
| 42 | 1 1 10 10 32 32 | ismhm | ⊢ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) ∈ ( 𝐺 MndHom 𝐺 ) ↔ ( ( 𝐺 ∈ Mnd ∧ 𝐺 ∈ Mnd ) ∧ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) : 𝐵 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) ‘ 𝑧 ) ) ∧ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) ‘ ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) ) ) |
| 43 | 4 4 41 42 | syl21anbrc | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑀 · 𝑥 ) ) ∈ ( 𝐺 MndHom 𝐺 ) ) |