This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of an operation given by maps-to notation. (Contributed by Rohan Ridenour, 14-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvmpopr2d.1 | ⊢ ( 𝜑 → 𝐹 = ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ 𝐶 ) ) | |
| fvmpopr2d.2 | ⊢ ( 𝜑 → 𝑃 = 〈 𝑎 , 𝑏 〉 ) | ||
| fvmpopr2d.3 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → 𝐶 ∈ 𝑉 ) | ||
| Assertion | fvmpopr2d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑃 ) = 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmpopr2d.1 | ⊢ ( 𝜑 → 𝐹 = ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ 𝐶 ) ) | |
| 2 | fvmpopr2d.2 | ⊢ ( 𝜑 → 𝑃 = 〈 𝑎 , 𝑏 〉 ) | |
| 3 | fvmpopr2d.3 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → 𝐶 ∈ 𝑉 ) | |
| 4 | df-ov | ⊢ ( 𝑎 ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ 𝐶 ) 𝑏 ) = ( ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ 𝐶 ) ‘ 〈 𝑎 , 𝑏 〉 ) | |
| 5 | 1 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → 𝐹 = ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ 𝐶 ) ) |
| 6 | 2 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → 𝑃 = 〈 𝑎 , 𝑏 〉 ) |
| 7 | 5 6 | fveq12d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑃 ) = ( ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ 𝐶 ) ‘ 〈 𝑎 , 𝑏 〉 ) ) |
| 8 | 4 7 | eqtr4id | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ 𝐶 ) 𝑏 ) = ( 𝐹 ‘ 𝑃 ) ) |
| 9 | nfcv | ⊢ Ⅎ 𝑐 𝐶 | |
| 10 | nfcv | ⊢ Ⅎ 𝑑 𝐶 | |
| 11 | nfcv | ⊢ Ⅎ 𝑎 𝑑 | |
| 12 | nfcsb1v | ⊢ Ⅎ 𝑎 ⦋ 𝑐 / 𝑎 ⦌ 𝐶 | |
| 13 | 11 12 | nfcsbw | ⊢ Ⅎ 𝑎 ⦋ 𝑑 / 𝑏 ⦌ ⦋ 𝑐 / 𝑎 ⦌ 𝐶 |
| 14 | nfcsb1v | ⊢ Ⅎ 𝑏 ⦋ 𝑑 / 𝑏 ⦌ ⦋ 𝑐 / 𝑎 ⦌ 𝐶 | |
| 15 | csbeq1a | ⊢ ( 𝑎 = 𝑐 → 𝐶 = ⦋ 𝑐 / 𝑎 ⦌ 𝐶 ) | |
| 16 | csbeq1a | ⊢ ( 𝑏 = 𝑑 → ⦋ 𝑐 / 𝑎 ⦌ 𝐶 = ⦋ 𝑑 / 𝑏 ⦌ ⦋ 𝑐 / 𝑎 ⦌ 𝐶 ) | |
| 17 | 15 16 | sylan9eq | ⊢ ( ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) → 𝐶 = ⦋ 𝑑 / 𝑏 ⦌ ⦋ 𝑐 / 𝑎 ⦌ 𝐶 ) |
| 18 | 9 10 13 14 17 | cbvmpo | ⊢ ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑐 ∈ 𝐴 , 𝑑 ∈ 𝐵 ↦ ⦋ 𝑑 / 𝑏 ⦌ ⦋ 𝑐 / 𝑎 ⦌ 𝐶 ) |
| 19 | 18 | oveqi | ⊢ ( 𝑎 ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ 𝐶 ) 𝑏 ) = ( 𝑎 ( 𝑐 ∈ 𝐴 , 𝑑 ∈ 𝐵 ↦ ⦋ 𝑑 / 𝑏 ⦌ ⦋ 𝑐 / 𝑎 ⦌ 𝐶 ) 𝑏 ) |
| 20 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑐 ∈ 𝐴 , 𝑑 ∈ 𝐵 ↦ ⦋ 𝑑 / 𝑏 ⦌ ⦋ 𝑐 / 𝑎 ⦌ 𝐶 ) = ( 𝑐 ∈ 𝐴 , 𝑑 ∈ 𝐵 ↦ ⦋ 𝑑 / 𝑏 ⦌ ⦋ 𝑐 / 𝑎 ⦌ 𝐶 ) ) | |
| 21 | equcom | ⊢ ( 𝑎 = 𝑐 ↔ 𝑐 = 𝑎 ) | |
| 22 | equcom | ⊢ ( 𝑏 = 𝑑 ↔ 𝑑 = 𝑏 ) | |
| 23 | 21 22 | anbi12i | ⊢ ( ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ↔ ( 𝑐 = 𝑎 ∧ 𝑑 = 𝑏 ) ) |
| 24 | 23 17 | sylbir | ⊢ ( ( 𝑐 = 𝑎 ∧ 𝑑 = 𝑏 ) → 𝐶 = ⦋ 𝑑 / 𝑏 ⦌ ⦋ 𝑐 / 𝑎 ⦌ 𝐶 ) |
| 25 | 24 | eqcomd | ⊢ ( ( 𝑐 = 𝑎 ∧ 𝑑 = 𝑏 ) → ⦋ 𝑑 / 𝑏 ⦌ ⦋ 𝑐 / 𝑎 ⦌ 𝐶 = 𝐶 ) |
| 26 | 25 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 = 𝑎 ∧ 𝑑 = 𝑏 ) ) → ⦋ 𝑑 / 𝑏 ⦌ ⦋ 𝑐 / 𝑎 ⦌ 𝐶 = 𝐶 ) |
| 27 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → 𝑎 ∈ 𝐴 ) | |
| 28 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ 𝐵 ) | |
| 29 | 20 26 27 28 3 | ovmpod | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( 𝑐 ∈ 𝐴 , 𝑑 ∈ 𝐵 ↦ ⦋ 𝑑 / 𝑏 ⦌ ⦋ 𝑐 / 𝑎 ⦌ 𝐶 ) 𝑏 ) = 𝐶 ) |
| 30 | 19 29 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ 𝐶 ) 𝑏 ) = 𝐶 ) |
| 31 | 8 30 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑃 ) = 𝐶 ) |