This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implication of a decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by AV, 14-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modmuladdim | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 mod 𝑀 ) = 𝐵 → ∃ 𝑘 ∈ ℤ 𝐴 = ( ( 𝑘 · 𝑀 ) + 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) | |
| 2 | modelico | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 mod 𝑀 ) ∈ ( 0 [,) 𝑀 ) ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 mod 𝑀 ) ∈ ( 0 [,) 𝑀 ) ) |
| 4 | 3 | adantr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) → ( 𝐴 mod 𝑀 ) ∈ ( 0 [,) 𝑀 ) ) |
| 5 | eleq1 | ⊢ ( ( 𝐴 mod 𝑀 ) = 𝐵 → ( ( 𝐴 mod 𝑀 ) ∈ ( 0 [,) 𝑀 ) ↔ 𝐵 ∈ ( 0 [,) 𝑀 ) ) ) | |
| 6 | 5 | adantl | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) → ( ( 𝐴 mod 𝑀 ) ∈ ( 0 [,) 𝑀 ) ↔ 𝐵 ∈ ( 0 [,) 𝑀 ) ) ) |
| 7 | 4 6 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) → 𝐵 ∈ ( 0 [,) 𝑀 ) ) |
| 8 | simpll | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) ∧ 𝐵 ∈ ( 0 [,) 𝑀 ) ) → 𝐴 ∈ ℤ ) | |
| 9 | simpr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) ∧ 𝐵 ∈ ( 0 [,) 𝑀 ) ) → 𝐵 ∈ ( 0 [,) 𝑀 ) ) | |
| 10 | simpr | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → 𝑀 ∈ ℝ+ ) | |
| 11 | 10 | adantr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) ∧ 𝐵 ∈ ( 0 [,) 𝑀 ) ) → 𝑀 ∈ ℝ+ ) |
| 12 | modmuladd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ( 0 [,) 𝑀 ) ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 mod 𝑀 ) = 𝐵 ↔ ∃ 𝑘 ∈ ℤ 𝐴 = ( ( 𝑘 · 𝑀 ) + 𝐵 ) ) ) | |
| 13 | 8 9 11 12 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) ∧ 𝐵 ∈ ( 0 [,) 𝑀 ) ) → ( ( 𝐴 mod 𝑀 ) = 𝐵 ↔ ∃ 𝑘 ∈ ℤ 𝐴 = ( ( 𝑘 · 𝑀 ) + 𝐵 ) ) ) |
| 14 | 13 | biimpd | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) ∧ 𝐵 ∈ ( 0 [,) 𝑀 ) ) → ( ( 𝐴 mod 𝑀 ) = 𝐵 → ∃ 𝑘 ∈ ℤ 𝐴 = ( ( 𝑘 · 𝑀 ) + 𝐵 ) ) ) |
| 15 | 14 | impancom | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) → ( 𝐵 ∈ ( 0 [,) 𝑀 ) → ∃ 𝑘 ∈ ℤ 𝐴 = ( ( 𝑘 · 𝑀 ) + 𝐵 ) ) ) |
| 16 | 7 15 | mpd | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) → ∃ 𝑘 ∈ ℤ 𝐴 = ( ( 𝑘 · 𝑀 ) + 𝐵 ) ) |
| 17 | 16 | ex | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 mod 𝑀 ) = 𝐵 → ∃ 𝑘 ∈ ℤ 𝐴 = ( ( 𝑘 · 𝑀 ) + 𝐵 ) ) ) |