This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The negation of a number modulo a positive number is equal to the difference of the modulus and the number modulo the modulus. (Contributed by AV, 5-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | negmod | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) → ( - 𝐴 mod 𝑁 ) = ( ( 𝑁 − 𝐴 ) mod 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpcn | ⊢ ( 𝑁 ∈ ℝ+ → 𝑁 ∈ ℂ ) | |
| 2 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 3 | negsub | ⊢ ( ( 𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝑁 + - 𝐴 ) = ( 𝑁 − 𝐴 ) ) | |
| 4 | 1 2 3 | syl2anr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) → ( 𝑁 + - 𝐴 ) = ( 𝑁 − 𝐴 ) ) |
| 5 | 4 | eqcomd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) → ( 𝑁 − 𝐴 ) = ( 𝑁 + - 𝐴 ) ) |
| 6 | 5 | oveq1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) → ( ( 𝑁 − 𝐴 ) mod 𝑁 ) = ( ( 𝑁 + - 𝐴 ) mod 𝑁 ) ) |
| 7 | 1 | mullidd | ⊢ ( 𝑁 ∈ ℝ+ → ( 1 · 𝑁 ) = 𝑁 ) |
| 8 | 7 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) → ( 1 · 𝑁 ) = 𝑁 ) |
| 9 | 8 | oveq1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) → ( ( 1 · 𝑁 ) + - 𝐴 ) = ( 𝑁 + - 𝐴 ) ) |
| 10 | 9 | oveq1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) → ( ( ( 1 · 𝑁 ) + - 𝐴 ) mod 𝑁 ) = ( ( 𝑁 + - 𝐴 ) mod 𝑁 ) ) |
| 11 | 1cnd | ⊢ ( 𝐴 ∈ ℝ → 1 ∈ ℂ ) | |
| 12 | mulcl | ⊢ ( ( 1 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( 1 · 𝑁 ) ∈ ℂ ) | |
| 13 | 11 1 12 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) → ( 1 · 𝑁 ) ∈ ℂ ) |
| 14 | renegcl | ⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) | |
| 15 | 14 | recnd | ⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℂ ) |
| 16 | 15 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) → - 𝐴 ∈ ℂ ) |
| 17 | 13 16 | addcomd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) → ( ( 1 · 𝑁 ) + - 𝐴 ) = ( - 𝐴 + ( 1 · 𝑁 ) ) ) |
| 18 | 17 | oveq1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) → ( ( ( 1 · 𝑁 ) + - 𝐴 ) mod 𝑁 ) = ( ( - 𝐴 + ( 1 · 𝑁 ) ) mod 𝑁 ) ) |
| 19 | 14 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) → - 𝐴 ∈ ℝ ) |
| 20 | simpr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) → 𝑁 ∈ ℝ+ ) | |
| 21 | 1zzd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) → 1 ∈ ℤ ) | |
| 22 | modcyc | ⊢ ( ( - 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ∧ 1 ∈ ℤ ) → ( ( - 𝐴 + ( 1 · 𝑁 ) ) mod 𝑁 ) = ( - 𝐴 mod 𝑁 ) ) | |
| 23 | 19 20 21 22 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) → ( ( - 𝐴 + ( 1 · 𝑁 ) ) mod 𝑁 ) = ( - 𝐴 mod 𝑁 ) ) |
| 24 | 18 23 | eqtrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) → ( ( ( 1 · 𝑁 ) + - 𝐴 ) mod 𝑁 ) = ( - 𝐴 mod 𝑁 ) ) |
| 25 | 6 10 24 | 3eqtr2rd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) → ( - 𝐴 mod 𝑁 ) = ( ( 𝑁 − 𝐴 ) mod 𝑁 ) ) |