This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of an integer modulo a positive integer and another integer minus the positive integer equals the sum of the two integers modulo the positive integer if the other integer is in the upper part of the range between 0 and the positive integer. (Contributed by AV, 30-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modaddmodup | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( 𝐵 ∈ ( ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ..^ 𝑀 ) → ( ( 𝐵 + ( 𝐴 mod 𝑀 ) ) − 𝑀 ) = ( ( 𝐵 + 𝐴 ) mod 𝑀 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzoelz | ⊢ ( 𝐵 ∈ ( ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ..^ 𝑀 ) → 𝐵 ∈ ℤ ) | |
| 2 | 1 | zred | ⊢ ( 𝐵 ∈ ( ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ..^ 𝑀 ) → 𝐵 ∈ ℝ ) |
| 3 | 2 | adantr | ⊢ ( ( 𝐵 ∈ ( ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ..^ 𝑀 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ) → 𝐵 ∈ ℝ ) |
| 4 | zmodcl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( 𝐴 mod 𝑀 ) ∈ ℕ0 ) | |
| 5 | 4 | nn0red | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( 𝐴 mod 𝑀 ) ∈ ℝ ) |
| 6 | 5 | adantl | ⊢ ( ( 𝐵 ∈ ( ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ..^ 𝑀 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ) → ( 𝐴 mod 𝑀 ) ∈ ℝ ) |
| 7 | 3 6 | readdcld | ⊢ ( ( 𝐵 ∈ ( ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ..^ 𝑀 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ) → ( 𝐵 + ( 𝐴 mod 𝑀 ) ) ∈ ℝ ) |
| 8 | 7 | ancoms | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ 𝐵 ∈ ( ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ..^ 𝑀 ) ) → ( 𝐵 + ( 𝐴 mod 𝑀 ) ) ∈ ℝ ) |
| 9 | nnrp | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ+ ) | |
| 10 | 9 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ 𝐵 ∈ ( ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ..^ 𝑀 ) ) → 𝑀 ∈ ℝ+ ) |
| 11 | elfzo2 | ⊢ ( 𝐵 ∈ ( ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ..^ 𝑀 ) ↔ ( 𝐵 ∈ ( ℤ≥ ‘ ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ) ∧ 𝑀 ∈ ℤ ∧ 𝐵 < 𝑀 ) ) | |
| 12 | eluz2 | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ) ↔ ( ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ≤ 𝐵 ) ) | |
| 13 | nnre | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ ) | |
| 14 | 13 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → 𝑀 ∈ ℝ ) |
| 15 | 14 | adantl | ⊢ ( ( 𝐵 ∈ ℤ ∧ ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ) → 𝑀 ∈ ℝ ) |
| 16 | 5 | adantl | ⊢ ( ( 𝐵 ∈ ℤ ∧ ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ) → ( 𝐴 mod 𝑀 ) ∈ ℝ ) |
| 17 | zre | ⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℝ ) | |
| 18 | 17 | adantr | ⊢ ( ( 𝐵 ∈ ℤ ∧ ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ) → 𝐵 ∈ ℝ ) |
| 19 | 15 16 18 | lesubaddd | ⊢ ( ( 𝐵 ∈ ℤ ∧ ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ) → ( ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ≤ 𝐵 ↔ 𝑀 ≤ ( 𝐵 + ( 𝐴 mod 𝑀 ) ) ) ) |
| 20 | 19 | biimpd | ⊢ ( ( 𝐵 ∈ ℤ ∧ ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ) → ( ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ≤ 𝐵 → 𝑀 ≤ ( 𝐵 + ( 𝐴 mod 𝑀 ) ) ) ) |
| 21 | 20 | impancom | ⊢ ( ( 𝐵 ∈ ℤ ∧ ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ≤ 𝐵 ) → ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → 𝑀 ≤ ( 𝐵 + ( 𝐴 mod 𝑀 ) ) ) ) |
| 22 | 21 | 3adant1 | ⊢ ( ( ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ≤ 𝐵 ) → ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → 𝑀 ≤ ( 𝐵 + ( 𝐴 mod 𝑀 ) ) ) ) |
| 23 | 12 22 | sylbi | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ) → ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → 𝑀 ≤ ( 𝐵 + ( 𝐴 mod 𝑀 ) ) ) ) |
| 24 | 23 | 3ad2ant1 | ⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ) ∧ 𝑀 ∈ ℤ ∧ 𝐵 < 𝑀 ) → ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → 𝑀 ≤ ( 𝐵 + ( 𝐴 mod 𝑀 ) ) ) ) |
| 25 | 11 24 | sylbi | ⊢ ( 𝐵 ∈ ( ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ..^ 𝑀 ) → ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → 𝑀 ≤ ( 𝐵 + ( 𝐴 mod 𝑀 ) ) ) ) |
| 26 | 25 | impcom | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ 𝐵 ∈ ( ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ..^ 𝑀 ) ) → 𝑀 ≤ ( 𝐵 + ( 𝐴 mod 𝑀 ) ) ) |
| 27 | eluzelz | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ) → 𝐵 ∈ ℤ ) | |
| 28 | 17 5 | anim12i | ⊢ ( ( 𝐵 ∈ ℤ ∧ ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ) → ( 𝐵 ∈ ℝ ∧ ( 𝐴 mod 𝑀 ) ∈ ℝ ) ) |
| 29 | 13 13 | jca | ⊢ ( 𝑀 ∈ ℕ → ( 𝑀 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ) |
| 30 | 29 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( 𝑀 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ) |
| 31 | 30 | adantl | ⊢ ( ( 𝐵 ∈ ℤ ∧ ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ) → ( 𝑀 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ) |
| 32 | 28 31 | jca | ⊢ ( ( 𝐵 ∈ ℤ ∧ ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ) → ( ( 𝐵 ∈ ℝ ∧ ( 𝐴 mod 𝑀 ) ∈ ℝ ) ∧ ( 𝑀 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ) ) |
| 33 | 32 | adantr | ⊢ ( ( ( 𝐵 ∈ ℤ ∧ ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ) ∧ 𝐵 < 𝑀 ) → ( ( 𝐵 ∈ ℝ ∧ ( 𝐴 mod 𝑀 ) ∈ ℝ ) ∧ ( 𝑀 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ) ) |
| 34 | simpr | ⊢ ( ( ( 𝐵 ∈ ℤ ∧ ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ) ∧ 𝐵 < 𝑀 ) → 𝐵 < 𝑀 ) | |
| 35 | zre | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) | |
| 36 | modlt | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 mod 𝑀 ) < 𝑀 ) | |
| 37 | 35 9 36 | syl2an | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( 𝐴 mod 𝑀 ) < 𝑀 ) |
| 38 | 5 14 37 | ltled | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( 𝐴 mod 𝑀 ) ≤ 𝑀 ) |
| 39 | 38 | ad2antlr | ⊢ ( ( ( 𝐵 ∈ ℤ ∧ ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ) ∧ 𝐵 < 𝑀 ) → ( 𝐴 mod 𝑀 ) ≤ 𝑀 ) |
| 40 | 34 39 | jca | ⊢ ( ( ( 𝐵 ∈ ℤ ∧ ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ) ∧ 𝐵 < 𝑀 ) → ( 𝐵 < 𝑀 ∧ ( 𝐴 mod 𝑀 ) ≤ 𝑀 ) ) |
| 41 | ltleadd | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ ( 𝐴 mod 𝑀 ) ∈ ℝ ) ∧ ( 𝑀 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ) → ( ( 𝐵 < 𝑀 ∧ ( 𝐴 mod 𝑀 ) ≤ 𝑀 ) → ( 𝐵 + ( 𝐴 mod 𝑀 ) ) < ( 𝑀 + 𝑀 ) ) ) | |
| 42 | 33 40 41 | sylc | ⊢ ( ( ( 𝐵 ∈ ℤ ∧ ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ) ∧ 𝐵 < 𝑀 ) → ( 𝐵 + ( 𝐴 mod 𝑀 ) ) < ( 𝑀 + 𝑀 ) ) |
| 43 | nncn | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℂ ) | |
| 44 | 43 | 2timesd | ⊢ ( 𝑀 ∈ ℕ → ( 2 · 𝑀 ) = ( 𝑀 + 𝑀 ) ) |
| 45 | 44 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( 2 · 𝑀 ) = ( 𝑀 + 𝑀 ) ) |
| 46 | 45 | ad2antlr | ⊢ ( ( ( 𝐵 ∈ ℤ ∧ ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ) ∧ 𝐵 < 𝑀 ) → ( 2 · 𝑀 ) = ( 𝑀 + 𝑀 ) ) |
| 47 | 42 46 | breqtrrd | ⊢ ( ( ( 𝐵 ∈ ℤ ∧ ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ) ∧ 𝐵 < 𝑀 ) → ( 𝐵 + ( 𝐴 mod 𝑀 ) ) < ( 2 · 𝑀 ) ) |
| 48 | 47 | exp31 | ⊢ ( 𝐵 ∈ ℤ → ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( 𝐵 < 𝑀 → ( 𝐵 + ( 𝐴 mod 𝑀 ) ) < ( 2 · 𝑀 ) ) ) ) |
| 49 | 48 | com23 | ⊢ ( 𝐵 ∈ ℤ → ( 𝐵 < 𝑀 → ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( 𝐵 + ( 𝐴 mod 𝑀 ) ) < ( 2 · 𝑀 ) ) ) ) |
| 50 | 27 49 | syl | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ) → ( 𝐵 < 𝑀 → ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( 𝐵 + ( 𝐴 mod 𝑀 ) ) < ( 2 · 𝑀 ) ) ) ) |
| 51 | 50 | imp | ⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ) ∧ 𝐵 < 𝑀 ) → ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( 𝐵 + ( 𝐴 mod 𝑀 ) ) < ( 2 · 𝑀 ) ) ) |
| 52 | 51 | 3adant2 | ⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ) ∧ 𝑀 ∈ ℤ ∧ 𝐵 < 𝑀 ) → ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( 𝐵 + ( 𝐴 mod 𝑀 ) ) < ( 2 · 𝑀 ) ) ) |
| 53 | 11 52 | sylbi | ⊢ ( 𝐵 ∈ ( ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ..^ 𝑀 ) → ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( 𝐵 + ( 𝐴 mod 𝑀 ) ) < ( 2 · 𝑀 ) ) ) |
| 54 | 53 | impcom | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ 𝐵 ∈ ( ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ..^ 𝑀 ) ) → ( 𝐵 + ( 𝐴 mod 𝑀 ) ) < ( 2 · 𝑀 ) ) |
| 55 | 2submod | ⊢ ( ( ( ( 𝐵 + ( 𝐴 mod 𝑀 ) ) ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝑀 ≤ ( 𝐵 + ( 𝐴 mod 𝑀 ) ) ∧ ( 𝐵 + ( 𝐴 mod 𝑀 ) ) < ( 2 · 𝑀 ) ) ) → ( ( 𝐵 + ( 𝐴 mod 𝑀 ) ) mod 𝑀 ) = ( ( 𝐵 + ( 𝐴 mod 𝑀 ) ) − 𝑀 ) ) | |
| 56 | 55 | eqcomd | ⊢ ( ( ( ( 𝐵 + ( 𝐴 mod 𝑀 ) ) ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝑀 ≤ ( 𝐵 + ( 𝐴 mod 𝑀 ) ) ∧ ( 𝐵 + ( 𝐴 mod 𝑀 ) ) < ( 2 · 𝑀 ) ) ) → ( ( 𝐵 + ( 𝐴 mod 𝑀 ) ) − 𝑀 ) = ( ( 𝐵 + ( 𝐴 mod 𝑀 ) ) mod 𝑀 ) ) |
| 57 | 8 10 26 54 56 | syl22anc | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ 𝐵 ∈ ( ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ..^ 𝑀 ) ) → ( ( 𝐵 + ( 𝐴 mod 𝑀 ) ) − 𝑀 ) = ( ( 𝐵 + ( 𝐴 mod 𝑀 ) ) mod 𝑀 ) ) |
| 58 | 35 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → 𝐴 ∈ ℝ ) |
| 59 | 58 | adantr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ 𝐵 ∈ ( ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ..^ 𝑀 ) ) → 𝐴 ∈ ℝ ) |
| 60 | 2 | adantl | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ 𝐵 ∈ ( ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ..^ 𝑀 ) ) → 𝐵 ∈ ℝ ) |
| 61 | modadd2mod | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐵 + ( 𝐴 mod 𝑀 ) ) mod 𝑀 ) = ( ( 𝐵 + 𝐴 ) mod 𝑀 ) ) | |
| 62 | 59 60 10 61 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ 𝐵 ∈ ( ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ..^ 𝑀 ) ) → ( ( 𝐵 + ( 𝐴 mod 𝑀 ) ) mod 𝑀 ) = ( ( 𝐵 + 𝐴 ) mod 𝑀 ) ) |
| 63 | 57 62 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ 𝐵 ∈ ( ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ..^ 𝑀 ) ) → ( ( 𝐵 + ( 𝐴 mod 𝑀 ) ) − 𝑀 ) = ( ( 𝐵 + 𝐴 ) mod 𝑀 ) ) |
| 64 | 63 | ex | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( 𝐵 ∈ ( ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ..^ 𝑀 ) → ( ( 𝐵 + ( 𝐴 mod 𝑀 ) ) − 𝑀 ) = ( ( 𝐵 + 𝐴 ) mod 𝑀 ) ) ) |