This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of a real number modulo a positive real number and another real number equals the sum of the two real numbers modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modadd2mod | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐵 + ( 𝐴 mod 𝑀 ) ) mod 𝑀 ) = ( ( 𝐵 + 𝐴 ) mod 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 2 | 1 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → 𝐵 ∈ ℂ ) |
| 3 | modcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 mod 𝑀 ) ∈ ℝ ) | |
| 4 | 3 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 mod 𝑀 ) ∈ ℂ ) |
| 5 | 4 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 mod 𝑀 ) ∈ ℂ ) |
| 6 | 2 5 | addcomd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐵 + ( 𝐴 mod 𝑀 ) ) = ( ( 𝐴 mod 𝑀 ) + 𝐵 ) ) |
| 7 | 6 | oveq1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐵 + ( 𝐴 mod 𝑀 ) ) mod 𝑀 ) = ( ( ( 𝐴 mod 𝑀 ) + 𝐵 ) mod 𝑀 ) ) |
| 8 | modaddmod | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( ( 𝐴 mod 𝑀 ) + 𝐵 ) mod 𝑀 ) = ( ( 𝐴 + 𝐵 ) mod 𝑀 ) ) | |
| 9 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 10 | addcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) | |
| 11 | 9 1 10 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) |
| 12 | 11 | oveq1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 + 𝐵 ) mod 𝑀 ) = ( ( 𝐵 + 𝐴 ) mod 𝑀 ) ) |
| 13 | 12 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 + 𝐵 ) mod 𝑀 ) = ( ( 𝐵 + 𝐴 ) mod 𝑀 ) ) |
| 14 | 7 8 13 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐵 + ( 𝐴 mod 𝑀 ) ) mod 𝑀 ) = ( ( 𝐵 + 𝐴 ) mod 𝑀 ) ) |