This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of an integer modulo a positive integer and another integer minus the positive integer equals the sum of the two integers modulo the positive integer if the other integer is in the upper part of the range between 0 and the positive integer. (Contributed by AV, 30-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modaddmodup | |- ( ( A e. ZZ /\ M e. NN ) -> ( B e. ( ( M - ( A mod M ) ) ..^ M ) -> ( ( B + ( A mod M ) ) - M ) = ( ( B + A ) mod M ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzoelz | |- ( B e. ( ( M - ( A mod M ) ) ..^ M ) -> B e. ZZ ) |
|
| 2 | 1 | zred | |- ( B e. ( ( M - ( A mod M ) ) ..^ M ) -> B e. RR ) |
| 3 | 2 | adantr | |- ( ( B e. ( ( M - ( A mod M ) ) ..^ M ) /\ ( A e. ZZ /\ M e. NN ) ) -> B e. RR ) |
| 4 | zmodcl | |- ( ( A e. ZZ /\ M e. NN ) -> ( A mod M ) e. NN0 ) |
|
| 5 | 4 | nn0red | |- ( ( A e. ZZ /\ M e. NN ) -> ( A mod M ) e. RR ) |
| 6 | 5 | adantl | |- ( ( B e. ( ( M - ( A mod M ) ) ..^ M ) /\ ( A e. ZZ /\ M e. NN ) ) -> ( A mod M ) e. RR ) |
| 7 | 3 6 | readdcld | |- ( ( B e. ( ( M - ( A mod M ) ) ..^ M ) /\ ( A e. ZZ /\ M e. NN ) ) -> ( B + ( A mod M ) ) e. RR ) |
| 8 | 7 | ancoms | |- ( ( ( A e. ZZ /\ M e. NN ) /\ B e. ( ( M - ( A mod M ) ) ..^ M ) ) -> ( B + ( A mod M ) ) e. RR ) |
| 9 | nnrp | |- ( M e. NN -> M e. RR+ ) |
|
| 10 | 9 | ad2antlr | |- ( ( ( A e. ZZ /\ M e. NN ) /\ B e. ( ( M - ( A mod M ) ) ..^ M ) ) -> M e. RR+ ) |
| 11 | elfzo2 | |- ( B e. ( ( M - ( A mod M ) ) ..^ M ) <-> ( B e. ( ZZ>= ` ( M - ( A mod M ) ) ) /\ M e. ZZ /\ B < M ) ) |
|
| 12 | eluz2 | |- ( B e. ( ZZ>= ` ( M - ( A mod M ) ) ) <-> ( ( M - ( A mod M ) ) e. ZZ /\ B e. ZZ /\ ( M - ( A mod M ) ) <_ B ) ) |
|
| 13 | nnre | |- ( M e. NN -> M e. RR ) |
|
| 14 | 13 | adantl | |- ( ( A e. ZZ /\ M e. NN ) -> M e. RR ) |
| 15 | 14 | adantl | |- ( ( B e. ZZ /\ ( A e. ZZ /\ M e. NN ) ) -> M e. RR ) |
| 16 | 5 | adantl | |- ( ( B e. ZZ /\ ( A e. ZZ /\ M e. NN ) ) -> ( A mod M ) e. RR ) |
| 17 | zre | |- ( B e. ZZ -> B e. RR ) |
|
| 18 | 17 | adantr | |- ( ( B e. ZZ /\ ( A e. ZZ /\ M e. NN ) ) -> B e. RR ) |
| 19 | 15 16 18 | lesubaddd | |- ( ( B e. ZZ /\ ( A e. ZZ /\ M e. NN ) ) -> ( ( M - ( A mod M ) ) <_ B <-> M <_ ( B + ( A mod M ) ) ) ) |
| 20 | 19 | biimpd | |- ( ( B e. ZZ /\ ( A e. ZZ /\ M e. NN ) ) -> ( ( M - ( A mod M ) ) <_ B -> M <_ ( B + ( A mod M ) ) ) ) |
| 21 | 20 | impancom | |- ( ( B e. ZZ /\ ( M - ( A mod M ) ) <_ B ) -> ( ( A e. ZZ /\ M e. NN ) -> M <_ ( B + ( A mod M ) ) ) ) |
| 22 | 21 | 3adant1 | |- ( ( ( M - ( A mod M ) ) e. ZZ /\ B e. ZZ /\ ( M - ( A mod M ) ) <_ B ) -> ( ( A e. ZZ /\ M e. NN ) -> M <_ ( B + ( A mod M ) ) ) ) |
| 23 | 12 22 | sylbi | |- ( B e. ( ZZ>= ` ( M - ( A mod M ) ) ) -> ( ( A e. ZZ /\ M e. NN ) -> M <_ ( B + ( A mod M ) ) ) ) |
| 24 | 23 | 3ad2ant1 | |- ( ( B e. ( ZZ>= ` ( M - ( A mod M ) ) ) /\ M e. ZZ /\ B < M ) -> ( ( A e. ZZ /\ M e. NN ) -> M <_ ( B + ( A mod M ) ) ) ) |
| 25 | 11 24 | sylbi | |- ( B e. ( ( M - ( A mod M ) ) ..^ M ) -> ( ( A e. ZZ /\ M e. NN ) -> M <_ ( B + ( A mod M ) ) ) ) |
| 26 | 25 | impcom | |- ( ( ( A e. ZZ /\ M e. NN ) /\ B e. ( ( M - ( A mod M ) ) ..^ M ) ) -> M <_ ( B + ( A mod M ) ) ) |
| 27 | eluzelz | |- ( B e. ( ZZ>= ` ( M - ( A mod M ) ) ) -> B e. ZZ ) |
|
| 28 | 17 5 | anim12i | |- ( ( B e. ZZ /\ ( A e. ZZ /\ M e. NN ) ) -> ( B e. RR /\ ( A mod M ) e. RR ) ) |
| 29 | 13 13 | jca | |- ( M e. NN -> ( M e. RR /\ M e. RR ) ) |
| 30 | 29 | adantl | |- ( ( A e. ZZ /\ M e. NN ) -> ( M e. RR /\ M e. RR ) ) |
| 31 | 30 | adantl | |- ( ( B e. ZZ /\ ( A e. ZZ /\ M e. NN ) ) -> ( M e. RR /\ M e. RR ) ) |
| 32 | 28 31 | jca | |- ( ( B e. ZZ /\ ( A e. ZZ /\ M e. NN ) ) -> ( ( B e. RR /\ ( A mod M ) e. RR ) /\ ( M e. RR /\ M e. RR ) ) ) |
| 33 | 32 | adantr | |- ( ( ( B e. ZZ /\ ( A e. ZZ /\ M e. NN ) ) /\ B < M ) -> ( ( B e. RR /\ ( A mod M ) e. RR ) /\ ( M e. RR /\ M e. RR ) ) ) |
| 34 | simpr | |- ( ( ( B e. ZZ /\ ( A e. ZZ /\ M e. NN ) ) /\ B < M ) -> B < M ) |
|
| 35 | zre | |- ( A e. ZZ -> A e. RR ) |
|
| 36 | modlt | |- ( ( A e. RR /\ M e. RR+ ) -> ( A mod M ) < M ) |
|
| 37 | 35 9 36 | syl2an | |- ( ( A e. ZZ /\ M e. NN ) -> ( A mod M ) < M ) |
| 38 | 5 14 37 | ltled | |- ( ( A e. ZZ /\ M e. NN ) -> ( A mod M ) <_ M ) |
| 39 | 38 | ad2antlr | |- ( ( ( B e. ZZ /\ ( A e. ZZ /\ M e. NN ) ) /\ B < M ) -> ( A mod M ) <_ M ) |
| 40 | 34 39 | jca | |- ( ( ( B e. ZZ /\ ( A e. ZZ /\ M e. NN ) ) /\ B < M ) -> ( B < M /\ ( A mod M ) <_ M ) ) |
| 41 | ltleadd | |- ( ( ( B e. RR /\ ( A mod M ) e. RR ) /\ ( M e. RR /\ M e. RR ) ) -> ( ( B < M /\ ( A mod M ) <_ M ) -> ( B + ( A mod M ) ) < ( M + M ) ) ) |
|
| 42 | 33 40 41 | sylc | |- ( ( ( B e. ZZ /\ ( A e. ZZ /\ M e. NN ) ) /\ B < M ) -> ( B + ( A mod M ) ) < ( M + M ) ) |
| 43 | nncn | |- ( M e. NN -> M e. CC ) |
|
| 44 | 43 | 2timesd | |- ( M e. NN -> ( 2 x. M ) = ( M + M ) ) |
| 45 | 44 | adantl | |- ( ( A e. ZZ /\ M e. NN ) -> ( 2 x. M ) = ( M + M ) ) |
| 46 | 45 | ad2antlr | |- ( ( ( B e. ZZ /\ ( A e. ZZ /\ M e. NN ) ) /\ B < M ) -> ( 2 x. M ) = ( M + M ) ) |
| 47 | 42 46 | breqtrrd | |- ( ( ( B e. ZZ /\ ( A e. ZZ /\ M e. NN ) ) /\ B < M ) -> ( B + ( A mod M ) ) < ( 2 x. M ) ) |
| 48 | 47 | exp31 | |- ( B e. ZZ -> ( ( A e. ZZ /\ M e. NN ) -> ( B < M -> ( B + ( A mod M ) ) < ( 2 x. M ) ) ) ) |
| 49 | 48 | com23 | |- ( B e. ZZ -> ( B < M -> ( ( A e. ZZ /\ M e. NN ) -> ( B + ( A mod M ) ) < ( 2 x. M ) ) ) ) |
| 50 | 27 49 | syl | |- ( B e. ( ZZ>= ` ( M - ( A mod M ) ) ) -> ( B < M -> ( ( A e. ZZ /\ M e. NN ) -> ( B + ( A mod M ) ) < ( 2 x. M ) ) ) ) |
| 51 | 50 | imp | |- ( ( B e. ( ZZ>= ` ( M - ( A mod M ) ) ) /\ B < M ) -> ( ( A e. ZZ /\ M e. NN ) -> ( B + ( A mod M ) ) < ( 2 x. M ) ) ) |
| 52 | 51 | 3adant2 | |- ( ( B e. ( ZZ>= ` ( M - ( A mod M ) ) ) /\ M e. ZZ /\ B < M ) -> ( ( A e. ZZ /\ M e. NN ) -> ( B + ( A mod M ) ) < ( 2 x. M ) ) ) |
| 53 | 11 52 | sylbi | |- ( B e. ( ( M - ( A mod M ) ) ..^ M ) -> ( ( A e. ZZ /\ M e. NN ) -> ( B + ( A mod M ) ) < ( 2 x. M ) ) ) |
| 54 | 53 | impcom | |- ( ( ( A e. ZZ /\ M e. NN ) /\ B e. ( ( M - ( A mod M ) ) ..^ M ) ) -> ( B + ( A mod M ) ) < ( 2 x. M ) ) |
| 55 | 2submod | |- ( ( ( ( B + ( A mod M ) ) e. RR /\ M e. RR+ ) /\ ( M <_ ( B + ( A mod M ) ) /\ ( B + ( A mod M ) ) < ( 2 x. M ) ) ) -> ( ( B + ( A mod M ) ) mod M ) = ( ( B + ( A mod M ) ) - M ) ) |
|
| 56 | 55 | eqcomd | |- ( ( ( ( B + ( A mod M ) ) e. RR /\ M e. RR+ ) /\ ( M <_ ( B + ( A mod M ) ) /\ ( B + ( A mod M ) ) < ( 2 x. M ) ) ) -> ( ( B + ( A mod M ) ) - M ) = ( ( B + ( A mod M ) ) mod M ) ) |
| 57 | 8 10 26 54 56 | syl22anc | |- ( ( ( A e. ZZ /\ M e. NN ) /\ B e. ( ( M - ( A mod M ) ) ..^ M ) ) -> ( ( B + ( A mod M ) ) - M ) = ( ( B + ( A mod M ) ) mod M ) ) |
| 58 | 35 | adantr | |- ( ( A e. ZZ /\ M e. NN ) -> A e. RR ) |
| 59 | 58 | adantr | |- ( ( ( A e. ZZ /\ M e. NN ) /\ B e. ( ( M - ( A mod M ) ) ..^ M ) ) -> A e. RR ) |
| 60 | 2 | adantl | |- ( ( ( A e. ZZ /\ M e. NN ) /\ B e. ( ( M - ( A mod M ) ) ..^ M ) ) -> B e. RR ) |
| 61 | modadd2mod | |- ( ( A e. RR /\ B e. RR /\ M e. RR+ ) -> ( ( B + ( A mod M ) ) mod M ) = ( ( B + A ) mod M ) ) |
|
| 62 | 59 60 10 61 | syl3anc | |- ( ( ( A e. ZZ /\ M e. NN ) /\ B e. ( ( M - ( A mod M ) ) ..^ M ) ) -> ( ( B + ( A mod M ) ) mod M ) = ( ( B + A ) mod M ) ) |
| 63 | 57 62 | eqtrd | |- ( ( ( A e. ZZ /\ M e. NN ) /\ B e. ( ( M - ( A mod M ) ) ..^ M ) ) -> ( ( B + ( A mod M ) ) - M ) = ( ( B + A ) mod M ) ) |
| 64 | 63 | ex | |- ( ( A e. ZZ /\ M e. NN ) -> ( B e. ( ( M - ( A mod M ) ) ..^ M ) -> ( ( B + ( A mod M ) ) - M ) = ( ( B + A ) mod M ) ) ) |