This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of an integer modulo a positive integer and another integer equals the sum of the two integers modulo the positive integer if the other integer is in the lower part of the range between 0 and the positive integer. (Contributed by AV, 30-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modaddmodlo | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( 𝐵 ∈ ( 0 ..^ ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ) → ( 𝐵 + ( 𝐴 mod 𝑀 ) ) = ( ( 𝐵 + 𝐴 ) mod 𝑀 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzoelz | ⊢ ( 𝐵 ∈ ( 0 ..^ ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ) → 𝐵 ∈ ℤ ) | |
| 2 | 1 | zred | ⊢ ( 𝐵 ∈ ( 0 ..^ ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ) → 𝐵 ∈ ℝ ) |
| 3 | 2 | adantr | ⊢ ( ( 𝐵 ∈ ( 0 ..^ ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ) ∧ ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ) → 𝐵 ∈ ℝ ) |
| 4 | zmodcl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( 𝐴 mod 𝑀 ) ∈ ℕ0 ) | |
| 5 | 4 | nn0red | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( 𝐴 mod 𝑀 ) ∈ ℝ ) |
| 6 | 5 | adantl | ⊢ ( ( 𝐵 ∈ ( 0 ..^ ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ) ∧ ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ) → ( 𝐴 mod 𝑀 ) ∈ ℝ ) |
| 7 | 3 6 | readdcld | ⊢ ( ( 𝐵 ∈ ( 0 ..^ ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ) ∧ ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ) → ( 𝐵 + ( 𝐴 mod 𝑀 ) ) ∈ ℝ ) |
| 8 | 7 | ancoms | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ 𝐵 ∈ ( 0 ..^ ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ) ) → ( 𝐵 + ( 𝐴 mod 𝑀 ) ) ∈ ℝ ) |
| 9 | nnrp | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ+ ) | |
| 10 | 9 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ 𝐵 ∈ ( 0 ..^ ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ) ) → 𝑀 ∈ ℝ+ ) |
| 11 | 2 | adantl | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ 𝐵 ∈ ( 0 ..^ ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ) ) → 𝐵 ∈ ℝ ) |
| 12 | 5 | adantr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ 𝐵 ∈ ( 0 ..^ ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ) ) → ( 𝐴 mod 𝑀 ) ∈ ℝ ) |
| 13 | elfzole1 | ⊢ ( 𝐵 ∈ ( 0 ..^ ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ) → 0 ≤ 𝐵 ) | |
| 14 | 13 | adantl | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ 𝐵 ∈ ( 0 ..^ ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ) ) → 0 ≤ 𝐵 ) |
| 15 | 4 | nn0ge0d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → 0 ≤ ( 𝐴 mod 𝑀 ) ) |
| 16 | 15 | adantr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ 𝐵 ∈ ( 0 ..^ ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ) ) → 0 ≤ ( 𝐴 mod 𝑀 ) ) |
| 17 | 11 12 14 16 | addge0d | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ 𝐵 ∈ ( 0 ..^ ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ) ) → 0 ≤ ( 𝐵 + ( 𝐴 mod 𝑀 ) ) ) |
| 18 | elfzolt2 | ⊢ ( 𝐵 ∈ ( 0 ..^ ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ) → 𝐵 < ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ) | |
| 19 | 18 | adantl | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ 𝐵 ∈ ( 0 ..^ ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ) ) → 𝐵 < ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ) |
| 20 | nnre | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ ) | |
| 21 | 20 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ 𝐵 ∈ ( 0 ..^ ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ) ) → 𝑀 ∈ ℝ ) |
| 22 | 11 12 21 | ltaddsubd | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ 𝐵 ∈ ( 0 ..^ ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ) ) → ( ( 𝐵 + ( 𝐴 mod 𝑀 ) ) < 𝑀 ↔ 𝐵 < ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ) ) |
| 23 | 19 22 | mpbird | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ 𝐵 ∈ ( 0 ..^ ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ) ) → ( 𝐵 + ( 𝐴 mod 𝑀 ) ) < 𝑀 ) |
| 24 | modid | ⊢ ( ( ( ( 𝐵 + ( 𝐴 mod 𝑀 ) ) ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 0 ≤ ( 𝐵 + ( 𝐴 mod 𝑀 ) ) ∧ ( 𝐵 + ( 𝐴 mod 𝑀 ) ) < 𝑀 ) ) → ( ( 𝐵 + ( 𝐴 mod 𝑀 ) ) mod 𝑀 ) = ( 𝐵 + ( 𝐴 mod 𝑀 ) ) ) | |
| 25 | 8 10 17 23 24 | syl22anc | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ 𝐵 ∈ ( 0 ..^ ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ) ) → ( ( 𝐵 + ( 𝐴 mod 𝑀 ) ) mod 𝑀 ) = ( 𝐵 + ( 𝐴 mod 𝑀 ) ) ) |
| 26 | zre | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) | |
| 27 | 26 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → 𝐴 ∈ ℝ ) |
| 28 | 27 | adantr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ 𝐵 ∈ ( 0 ..^ ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ) ) → 𝐴 ∈ ℝ ) |
| 29 | modadd2mod | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐵 + ( 𝐴 mod 𝑀 ) ) mod 𝑀 ) = ( ( 𝐵 + 𝐴 ) mod 𝑀 ) ) | |
| 30 | 28 11 10 29 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ 𝐵 ∈ ( 0 ..^ ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ) ) → ( ( 𝐵 + ( 𝐴 mod 𝑀 ) ) mod 𝑀 ) = ( ( 𝐵 + 𝐴 ) mod 𝑀 ) ) |
| 31 | 25 30 | eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ 𝐵 ∈ ( 0 ..^ ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ) ) → ( 𝐵 + ( 𝐴 mod 𝑀 ) ) = ( ( 𝐵 + 𝐴 ) mod 𝑀 ) ) |
| 32 | 31 | ex | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( 𝐵 ∈ ( 0 ..^ ( 𝑀 − ( 𝐴 mod 𝑀 ) ) ) → ( 𝐵 + ( 𝐴 mod 𝑀 ) ) = ( ( 𝐵 + 𝐴 ) mod 𝑀 ) ) ) |