This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Adding both sides of two orderings. (Contributed by NM, 23-Dec-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltleadd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐴 < 𝐶 ∧ 𝐵 ≤ 𝐷 ) → ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltadd1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐶 ↔ ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐵 ) ) ) | |
| 2 | 1 | 3com23 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 < 𝐶 ↔ ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐵 ) ) ) |
| 3 | 2 | 3expa | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) → ( 𝐴 < 𝐶 ↔ ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐵 ) ) ) |
| 4 | 3 | adantrr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( 𝐴 < 𝐶 ↔ ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐵 ) ) ) |
| 5 | leadd2 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 ≤ 𝐷 ↔ ( 𝐶 + 𝐵 ) ≤ ( 𝐶 + 𝐷 ) ) ) | |
| 6 | 5 | 3com23 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( 𝐵 ≤ 𝐷 ↔ ( 𝐶 + 𝐵 ) ≤ ( 𝐶 + 𝐷 ) ) ) |
| 7 | 6 | 3expb | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( 𝐵 ≤ 𝐷 ↔ ( 𝐶 + 𝐵 ) ≤ ( 𝐶 + 𝐷 ) ) ) |
| 8 | 7 | adantll | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( 𝐵 ≤ 𝐷 ↔ ( 𝐶 + 𝐵 ) ≤ ( 𝐶 + 𝐷 ) ) ) |
| 9 | 4 8 | anbi12d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐴 < 𝐶 ∧ 𝐵 ≤ 𝐷 ) ↔ ( ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐵 ) ∧ ( 𝐶 + 𝐵 ) ≤ ( 𝐶 + 𝐷 ) ) ) ) |
| 10 | readdcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + 𝐵 ) ∈ ℝ ) | |
| 11 | 10 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( 𝐴 + 𝐵 ) ∈ ℝ ) |
| 12 | readdcl | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 + 𝐵 ) ∈ ℝ ) | |
| 13 | 12 | ancoms | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 + 𝐵 ) ∈ ℝ ) |
| 14 | 13 | ad2ant2lr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( 𝐶 + 𝐵 ) ∈ ℝ ) |
| 15 | readdcl | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( 𝐶 + 𝐷 ) ∈ ℝ ) | |
| 16 | 15 | adantl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( 𝐶 + 𝐷 ) ∈ ℝ ) |
| 17 | ltletr | ⊢ ( ( ( 𝐴 + 𝐵 ) ∈ ℝ ∧ ( 𝐶 + 𝐵 ) ∈ ℝ ∧ ( 𝐶 + 𝐷 ) ∈ ℝ ) → ( ( ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐵 ) ∧ ( 𝐶 + 𝐵 ) ≤ ( 𝐶 + 𝐷 ) ) → ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐷 ) ) ) | |
| 18 | 11 14 16 17 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐵 ) ∧ ( 𝐶 + 𝐵 ) ≤ ( 𝐶 + 𝐷 ) ) → ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐷 ) ) ) |
| 19 | 9 18 | sylbid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐴 < 𝐶 ∧ 𝐵 ≤ 𝐷 ) → ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐷 ) ) ) |