This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a real number is between a positive real number and twice the positive real number, the real number modulo the positive real number equals the real number minus the positive real number. (Contributed by Alexander van der Vekens, 13-May-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2submod | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝐵 ≤ 𝐴 ∧ 𝐴 < ( 2 · 𝐵 ) ) ) → ( 𝐴 mod 𝐵 ) = ( 𝐴 − 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre | ⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ ) | |
| 2 | ax-1rid | ⊢ ( 𝐵 ∈ ℝ → ( 𝐵 · 1 ) = 𝐵 ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐵 ∈ ℝ+ → ( 𝐵 · 1 ) = 𝐵 ) |
| 4 | 3 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐵 · 1 ) = 𝐵 ) |
| 5 | 4 | oveq2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 − ( 𝐵 · 1 ) ) = ( 𝐴 − 𝐵 ) ) |
| 6 | 5 | oveq1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 − ( 𝐵 · 1 ) ) mod 𝐵 ) = ( ( 𝐴 − 𝐵 ) mod 𝐵 ) ) |
| 7 | 6 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝐵 ≤ 𝐴 ∧ 𝐴 < ( 2 · 𝐵 ) ) ) → ( ( 𝐴 − ( 𝐵 · 1 ) ) mod 𝐵 ) = ( ( 𝐴 − 𝐵 ) mod 𝐵 ) ) |
| 8 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) | |
| 9 | simpr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐵 ∈ ℝ+ ) | |
| 10 | 1zzd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 1 ∈ ℤ ) | |
| 11 | 8 9 10 | 3jca | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 1 ∈ ℤ ) ) |
| 12 | 11 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝐵 ≤ 𝐴 ∧ 𝐴 < ( 2 · 𝐵 ) ) ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 1 ∈ ℤ ) ) |
| 13 | modcyc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 1 ∈ ℤ ) → ( ( 𝐴 − ( 𝐵 · 1 ) ) mod 𝐵 ) = ( 𝐴 mod 𝐵 ) ) | |
| 14 | 12 13 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝐵 ≤ 𝐴 ∧ 𝐴 < ( 2 · 𝐵 ) ) ) → ( ( 𝐴 − ( 𝐵 · 1 ) ) mod 𝐵 ) = ( 𝐴 mod 𝐵 ) ) |
| 15 | resubcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 − 𝐵 ) ∈ ℝ ) | |
| 16 | 1 15 | sylan2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 − 𝐵 ) ∈ ℝ ) |
| 17 | 16 9 | jca | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 − 𝐵 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ) |
| 18 | subge0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ ( 𝐴 − 𝐵 ) ↔ 𝐵 ≤ 𝐴 ) ) | |
| 19 | 1 18 | sylan2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 0 ≤ ( 𝐴 − 𝐵 ) ↔ 𝐵 ≤ 𝐴 ) ) |
| 20 | 19 | bicomd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐵 ≤ 𝐴 ↔ 0 ≤ ( 𝐴 − 𝐵 ) ) ) |
| 21 | rpcn | ⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ ) | |
| 22 | 21 | 2timesd | ⊢ ( 𝐵 ∈ ℝ+ → ( 2 · 𝐵 ) = ( 𝐵 + 𝐵 ) ) |
| 23 | 22 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 2 · 𝐵 ) = ( 𝐵 + 𝐵 ) ) |
| 24 | 23 | breq2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 < ( 2 · 𝐵 ) ↔ 𝐴 < ( 𝐵 + 𝐵 ) ) ) |
| 25 | 1 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐵 ∈ ℝ ) |
| 26 | 8 25 25 | ltsubaddd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 − 𝐵 ) < 𝐵 ↔ 𝐴 < ( 𝐵 + 𝐵 ) ) ) |
| 27 | 24 26 | bitr4d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 < ( 2 · 𝐵 ) ↔ ( 𝐴 − 𝐵 ) < 𝐵 ) ) |
| 28 | 20 27 | anbi12d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐵 ≤ 𝐴 ∧ 𝐴 < ( 2 · 𝐵 ) ) ↔ ( 0 ≤ ( 𝐴 − 𝐵 ) ∧ ( 𝐴 − 𝐵 ) < 𝐵 ) ) ) |
| 29 | 28 | biimpa | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝐵 ≤ 𝐴 ∧ 𝐴 < ( 2 · 𝐵 ) ) ) → ( 0 ≤ ( 𝐴 − 𝐵 ) ∧ ( 𝐴 − 𝐵 ) < 𝐵 ) ) |
| 30 | modid | ⊢ ( ( ( ( 𝐴 − 𝐵 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 0 ≤ ( 𝐴 − 𝐵 ) ∧ ( 𝐴 − 𝐵 ) < 𝐵 ) ) → ( ( 𝐴 − 𝐵 ) mod 𝐵 ) = ( 𝐴 − 𝐵 ) ) | |
| 31 | 17 29 30 | syl2an2r | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝐵 ≤ 𝐴 ∧ 𝐴 < ( 2 · 𝐵 ) ) ) → ( ( 𝐴 − 𝐵 ) mod 𝐵 ) = ( 𝐴 − 𝐵 ) ) |
| 32 | 7 14 31 | 3eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝐵 ≤ 𝐴 ∧ 𝐴 < ( 2 · 𝐵 ) ) ) → ( 𝐴 mod 𝐵 ) = ( 𝐴 − 𝐵 ) ) |