This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a monoid G under a monoid homomorphism F is a monoid. (Contributed by Thierry Arnoux, 25-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghmgrp.f | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) | |
| ghmgrp.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | ||
| ghmgrp.y | ⊢ 𝑌 = ( Base ‘ 𝐻 ) | ||
| ghmgrp.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| ghmgrp.q | ⊢ ⨣ = ( +g ‘ 𝐻 ) | ||
| ghmgrp.1 | ⊢ ( 𝜑 → 𝐹 : 𝑋 –onto→ 𝑌 ) | ||
| mhmmnd.3 | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | ||
| Assertion | mhmmnd | ⊢ ( 𝜑 → 𝐻 ∈ Mnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmgrp.f | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) | |
| 2 | ghmgrp.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 3 | ghmgrp.y | ⊢ 𝑌 = ( Base ‘ 𝐻 ) | |
| 4 | ghmgrp.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 5 | ghmgrp.q | ⊢ ⨣ = ( +g ‘ 𝐻 ) | |
| 6 | ghmgrp.1 | ⊢ ( 𝜑 → 𝐹 : 𝑋 –onto→ 𝑌 ) | |
| 7 | mhmmnd.3 | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | |
| 8 | simpllr | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) → ( 𝐹 ‘ 𝑖 ) = 𝑎 ) | |
| 9 | simpr | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) → ( 𝐹 ‘ 𝑗 ) = 𝑏 ) | |
| 10 | 8 9 | oveq12d | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) → ( ( 𝐹 ‘ 𝑖 ) ⨣ ( 𝐹 ‘ 𝑗 ) ) = ( 𝑎 ⨣ 𝑏 ) ) |
| 11 | simp-5l | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) → 𝜑 ) | |
| 12 | 11 1 | syl3an1 | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) |
| 13 | simp-4r | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) → 𝑖 ∈ 𝑋 ) | |
| 14 | simplr | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) → 𝑗 ∈ 𝑋 ) | |
| 15 | 12 13 14 | mhmlem | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) → ( 𝐹 ‘ ( 𝑖 + 𝑗 ) ) = ( ( 𝐹 ‘ 𝑖 ) ⨣ ( 𝐹 ‘ 𝑗 ) ) ) |
| 16 | fof | ⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → 𝐹 : 𝑋 ⟶ 𝑌 ) | |
| 17 | 6 16 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 18 | 17 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 19 | 7 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) → 𝐺 ∈ Mnd ) |
| 20 | 2 4 | mndcl | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑋 ) → ( 𝑖 + 𝑗 ) ∈ 𝑋 ) |
| 21 | 19 13 14 20 | syl3anc | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) → ( 𝑖 + 𝑗 ) ∈ 𝑋 ) |
| 22 | 18 21 | ffvelcdmd | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) → ( 𝐹 ‘ ( 𝑖 + 𝑗 ) ) ∈ 𝑌 ) |
| 23 | 15 22 | eqeltrrd | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) → ( ( 𝐹 ‘ 𝑖 ) ⨣ ( 𝐹 ‘ 𝑗 ) ) ∈ 𝑌 ) |
| 24 | 10 23 | eqeltrrd | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) → ( 𝑎 ⨣ 𝑏 ) ∈ 𝑌 ) |
| 25 | simpr | ⊢ ( ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) → 𝑏 ∈ 𝑌 ) | |
| 26 | foelcdmi | ⊢ ( ( 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝑏 ∈ 𝑌 ) → ∃ 𝑗 ∈ 𝑋 ( 𝐹 ‘ 𝑗 ) = 𝑏 ) | |
| 27 | 6 25 26 | syl2an | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) → ∃ 𝑗 ∈ 𝑋 ( 𝐹 ‘ 𝑗 ) = 𝑏 ) |
| 28 | 27 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ∃ 𝑗 ∈ 𝑋 ( 𝐹 ‘ 𝑗 ) = 𝑏 ) |
| 29 | 24 28 | r19.29a | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 𝑎 ⨣ 𝑏 ) ∈ 𝑌 ) |
| 30 | simpl | ⊢ ( ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) → 𝑎 ∈ 𝑌 ) | |
| 31 | foelcdmi | ⊢ ( ( 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝑎 ∈ 𝑌 ) → ∃ 𝑖 ∈ 𝑋 ( 𝐹 ‘ 𝑖 ) = 𝑎 ) | |
| 32 | 6 30 31 | syl2an | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) → ∃ 𝑖 ∈ 𝑋 ( 𝐹 ‘ 𝑖 ) = 𝑎 ) |
| 33 | 29 32 | r19.29a | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) → ( 𝑎 ⨣ 𝑏 ) ∈ 𝑌 ) |
| 34 | simpll | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) ∧ 𝑐 ∈ 𝑌 ) → 𝜑 ) | |
| 35 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) ∧ 𝑐 ∈ 𝑌 ) → 𝑎 ∈ 𝑌 ) | |
| 36 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) ∧ 𝑐 ∈ 𝑌 ) → 𝑏 ∈ 𝑌 ) | |
| 37 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) ∧ 𝑐 ∈ 𝑌 ) → 𝑐 ∈ 𝑌 ) | |
| 38 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) → 𝐺 ∈ Mnd ) |
| 39 | 38 | ad5antr | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → 𝐺 ∈ Mnd ) |
| 40 | simp-6r | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → 𝑖 ∈ 𝑋 ) | |
| 41 | simp-4r | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → 𝑗 ∈ 𝑋 ) | |
| 42 | simplr | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → 𝑘 ∈ 𝑋 ) | |
| 43 | 2 4 | mndass | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑋 ) ) → ( ( 𝑖 + 𝑗 ) + 𝑘 ) = ( 𝑖 + ( 𝑗 + 𝑘 ) ) ) |
| 44 | 39 40 41 42 43 | syl13anc | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → ( ( 𝑖 + 𝑗 ) + 𝑘 ) = ( 𝑖 + ( 𝑗 + 𝑘 ) ) ) |
| 45 | 44 | fveq2d | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → ( 𝐹 ‘ ( ( 𝑖 + 𝑗 ) + 𝑘 ) ) = ( 𝐹 ‘ ( 𝑖 + ( 𝑗 + 𝑘 ) ) ) ) |
| 46 | simp-7l | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → 𝜑 ) | |
| 47 | 46 1 | syl3an1 | ⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) |
| 48 | 39 40 41 20 | syl3anc | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → ( 𝑖 + 𝑗 ) ∈ 𝑋 ) |
| 49 | 47 48 42 | mhmlem | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → ( 𝐹 ‘ ( ( 𝑖 + 𝑗 ) + 𝑘 ) ) = ( ( 𝐹 ‘ ( 𝑖 + 𝑗 ) ) ⨣ ( 𝐹 ‘ 𝑘 ) ) ) |
| 50 | 2 4 | mndcl | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑋 ) → ( 𝑗 + 𝑘 ) ∈ 𝑋 ) |
| 51 | 39 41 42 50 | syl3anc | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → ( 𝑗 + 𝑘 ) ∈ 𝑋 ) |
| 52 | 47 40 51 | mhmlem | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → ( 𝐹 ‘ ( 𝑖 + ( 𝑗 + 𝑘 ) ) ) = ( ( 𝐹 ‘ 𝑖 ) ⨣ ( 𝐹 ‘ ( 𝑗 + 𝑘 ) ) ) ) |
| 53 | 45 49 52 | 3eqtr3d | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → ( ( 𝐹 ‘ ( 𝑖 + 𝑗 ) ) ⨣ ( 𝐹 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑖 ) ⨣ ( 𝐹 ‘ ( 𝑗 + 𝑘 ) ) ) ) |
| 54 | simp1 | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑋 ) → 𝜑 ) | |
| 55 | 54 1 | syl3an1 | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) |
| 56 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑋 ) → 𝑖 ∈ 𝑋 ) | |
| 57 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑋 ) → 𝑗 ∈ 𝑋 ) | |
| 58 | 55 56 57 | mhmlem | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑖 + 𝑗 ) ) = ( ( 𝐹 ‘ 𝑖 ) ⨣ ( 𝐹 ‘ 𝑗 ) ) ) |
| 59 | 46 40 41 58 | syl3anc | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → ( 𝐹 ‘ ( 𝑖 + 𝑗 ) ) = ( ( 𝐹 ‘ 𝑖 ) ⨣ ( 𝐹 ‘ 𝑗 ) ) ) |
| 60 | 59 | oveq1d | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → ( ( 𝐹 ‘ ( 𝑖 + 𝑗 ) ) ⨣ ( 𝐹 ‘ 𝑘 ) ) = ( ( ( 𝐹 ‘ 𝑖 ) ⨣ ( 𝐹 ‘ 𝑗 ) ) ⨣ ( 𝐹 ‘ 𝑘 ) ) ) |
| 61 | 47 41 42 | mhmlem | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → ( 𝐹 ‘ ( 𝑗 + 𝑘 ) ) = ( ( 𝐹 ‘ 𝑗 ) ⨣ ( 𝐹 ‘ 𝑘 ) ) ) |
| 62 | 61 | oveq2d | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → ( ( 𝐹 ‘ 𝑖 ) ⨣ ( 𝐹 ‘ ( 𝑗 + 𝑘 ) ) ) = ( ( 𝐹 ‘ 𝑖 ) ⨣ ( ( 𝐹 ‘ 𝑗 ) ⨣ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 63 | 53 60 62 | 3eqtr3d | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → ( ( ( 𝐹 ‘ 𝑖 ) ⨣ ( 𝐹 ‘ 𝑗 ) ) ⨣ ( 𝐹 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑖 ) ⨣ ( ( 𝐹 ‘ 𝑗 ) ⨣ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 64 | simp-5r | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → ( 𝐹 ‘ 𝑖 ) = 𝑎 ) | |
| 65 | simpllr | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → ( 𝐹 ‘ 𝑗 ) = 𝑏 ) | |
| 66 | 64 65 | oveq12d | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → ( ( 𝐹 ‘ 𝑖 ) ⨣ ( 𝐹 ‘ 𝑗 ) ) = ( 𝑎 ⨣ 𝑏 ) ) |
| 67 | simpr | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → ( 𝐹 ‘ 𝑘 ) = 𝑐 ) | |
| 68 | 66 67 | oveq12d | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → ( ( ( 𝐹 ‘ 𝑖 ) ⨣ ( 𝐹 ‘ 𝑗 ) ) ⨣ ( 𝐹 ‘ 𝑘 ) ) = ( ( 𝑎 ⨣ 𝑏 ) ⨣ 𝑐 ) ) |
| 69 | 65 67 | oveq12d | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → ( ( 𝐹 ‘ 𝑗 ) ⨣ ( 𝐹 ‘ 𝑘 ) ) = ( 𝑏 ⨣ 𝑐 ) ) |
| 70 | 64 69 | oveq12d | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → ( ( 𝐹 ‘ 𝑖 ) ⨣ ( ( 𝐹 ‘ 𝑗 ) ⨣ ( 𝐹 ‘ 𝑘 ) ) ) = ( 𝑎 ⨣ ( 𝑏 ⨣ 𝑐 ) ) ) |
| 71 | 63 68 70 | 3eqtr3d | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → ( ( 𝑎 ⨣ 𝑏 ) ⨣ 𝑐 ) = ( 𝑎 ⨣ ( 𝑏 ⨣ 𝑐 ) ) ) |
| 72 | foelcdmi | ⊢ ( ( 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝑐 ∈ 𝑌 ) → ∃ 𝑘 ∈ 𝑋 ( 𝐹 ‘ 𝑘 ) = 𝑐 ) | |
| 73 | 6 72 | sylan | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑌 ) → ∃ 𝑘 ∈ 𝑋 ( 𝐹 ‘ 𝑘 ) = 𝑐 ) |
| 74 | 73 | 3ad2antr3 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) → ∃ 𝑘 ∈ 𝑋 ( 𝐹 ‘ 𝑘 ) = 𝑐 ) |
| 75 | 74 | ad4antr | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) → ∃ 𝑘 ∈ 𝑋 ( 𝐹 ‘ 𝑘 ) = 𝑐 ) |
| 76 | 71 75 | r19.29a | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) → ( ( 𝑎 ⨣ 𝑏 ) ⨣ 𝑐 ) = ( 𝑎 ⨣ ( 𝑏 ⨣ 𝑐 ) ) ) |
| 77 | 27 | 3adantr3 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) → ∃ 𝑗 ∈ 𝑋 ( 𝐹 ‘ 𝑗 ) = 𝑏 ) |
| 78 | 77 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ∃ 𝑗 ∈ 𝑋 ( 𝐹 ‘ 𝑗 ) = 𝑏 ) |
| 79 | 76 78 | r19.29a | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( ( 𝑎 ⨣ 𝑏 ) ⨣ 𝑐 ) = ( 𝑎 ⨣ ( 𝑏 ⨣ 𝑐 ) ) ) |
| 80 | 32 | 3adantr3 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) → ∃ 𝑖 ∈ 𝑋 ( 𝐹 ‘ 𝑖 ) = 𝑎 ) |
| 81 | 79 80 | r19.29a | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) → ( ( 𝑎 ⨣ 𝑏 ) ⨣ 𝑐 ) = ( 𝑎 ⨣ ( 𝑏 ⨣ 𝑐 ) ) ) |
| 82 | 34 35 36 37 81 | syl13anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) ∧ 𝑐 ∈ 𝑌 ) → ( ( 𝑎 ⨣ 𝑏 ) ⨣ 𝑐 ) = ( 𝑎 ⨣ ( 𝑏 ⨣ 𝑐 ) ) ) |
| 83 | 82 | ralrimiva | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) → ∀ 𝑐 ∈ 𝑌 ( ( 𝑎 ⨣ 𝑏 ) ⨣ 𝑐 ) = ( 𝑎 ⨣ ( 𝑏 ⨣ 𝑐 ) ) ) |
| 84 | 33 83 | jca | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) → ( ( 𝑎 ⨣ 𝑏 ) ∈ 𝑌 ∧ ∀ 𝑐 ∈ 𝑌 ( ( 𝑎 ⨣ 𝑏 ) ⨣ 𝑐 ) = ( 𝑎 ⨣ ( 𝑏 ⨣ 𝑐 ) ) ) ) |
| 85 | 84 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑌 ∀ 𝑏 ∈ 𝑌 ( ( 𝑎 ⨣ 𝑏 ) ∈ 𝑌 ∧ ∀ 𝑐 ∈ 𝑌 ( ( 𝑎 ⨣ 𝑏 ) ⨣ 𝑐 ) = ( 𝑎 ⨣ ( 𝑏 ⨣ 𝑐 ) ) ) ) |
| 86 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 87 | 2 86 | mndidcl | ⊢ ( 𝐺 ∈ Mnd → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
| 88 | 7 87 | syl | ⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
| 89 | 17 88 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ∈ 𝑌 ) |
| 90 | simplll | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → 𝜑 ) | |
| 91 | 90 1 | syl3an1 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) |
| 92 | 7 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → 𝐺 ∈ Mnd ) |
| 93 | 92 87 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
| 94 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → 𝑖 ∈ 𝑋 ) | |
| 95 | 91 93 94 | mhmlem | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 𝐹 ‘ ( ( 0g ‘ 𝐺 ) + 𝑖 ) ) = ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ⨣ ( 𝐹 ‘ 𝑖 ) ) ) |
| 96 | 2 4 86 | mndlid | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑖 ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) + 𝑖 ) = 𝑖 ) |
| 97 | 92 94 96 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( ( 0g ‘ 𝐺 ) + 𝑖 ) = 𝑖 ) |
| 98 | 97 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 𝐹 ‘ ( ( 0g ‘ 𝐺 ) + 𝑖 ) ) = ( 𝐹 ‘ 𝑖 ) ) |
| 99 | 95 98 | eqtr3d | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ⨣ ( 𝐹 ‘ 𝑖 ) ) = ( 𝐹 ‘ 𝑖 ) ) |
| 100 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 𝐹 ‘ 𝑖 ) = 𝑎 ) | |
| 101 | 100 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ⨣ ( 𝐹 ‘ 𝑖 ) ) = ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ⨣ 𝑎 ) ) |
| 102 | 99 101 100 | 3eqtr3d | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ⨣ 𝑎 ) = 𝑎 ) |
| 103 | 91 94 93 | mhmlem | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 𝐹 ‘ ( 𝑖 + ( 0g ‘ 𝐺 ) ) ) = ( ( 𝐹 ‘ 𝑖 ) ⨣ ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ) ) |
| 104 | 2 4 86 | mndrid | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑖 ∈ 𝑋 ) → ( 𝑖 + ( 0g ‘ 𝐺 ) ) = 𝑖 ) |
| 105 | 92 94 104 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 𝑖 + ( 0g ‘ 𝐺 ) ) = 𝑖 ) |
| 106 | 105 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 𝐹 ‘ ( 𝑖 + ( 0g ‘ 𝐺 ) ) ) = ( 𝐹 ‘ 𝑖 ) ) |
| 107 | 103 106 | eqtr3d | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( ( 𝐹 ‘ 𝑖 ) ⨣ ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ) = ( 𝐹 ‘ 𝑖 ) ) |
| 108 | 100 | oveq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( ( 𝐹 ‘ 𝑖 ) ⨣ ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ) = ( 𝑎 ⨣ ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ) ) |
| 109 | 107 108 100 | 3eqtr3d | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 𝑎 ⨣ ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ) = 𝑎 ) |
| 110 | 102 109 | jca | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ⨣ 𝑎 ) = 𝑎 ∧ ( 𝑎 ⨣ ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ) = 𝑎 ) ) |
| 111 | 6 31 | sylan | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) → ∃ 𝑖 ∈ 𝑋 ( 𝐹 ‘ 𝑖 ) = 𝑎 ) |
| 112 | 110 111 | r19.29a | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) → ( ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ⨣ 𝑎 ) = 𝑎 ∧ ( 𝑎 ⨣ ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ) = 𝑎 ) ) |
| 113 | 112 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑌 ( ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ⨣ 𝑎 ) = 𝑎 ∧ ( 𝑎 ⨣ ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ) = 𝑎 ) ) |
| 114 | oveq1 | ⊢ ( 𝑑 = ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) → ( 𝑑 ⨣ 𝑎 ) = ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ⨣ 𝑎 ) ) | |
| 115 | 114 | eqeq1d | ⊢ ( 𝑑 = ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) → ( ( 𝑑 ⨣ 𝑎 ) = 𝑎 ↔ ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ⨣ 𝑎 ) = 𝑎 ) ) |
| 116 | 115 | ovanraleqv | ⊢ ( 𝑑 = ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) → ( ∀ 𝑎 ∈ 𝑌 ( ( 𝑑 ⨣ 𝑎 ) = 𝑎 ∧ ( 𝑎 ⨣ 𝑑 ) = 𝑎 ) ↔ ∀ 𝑎 ∈ 𝑌 ( ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ⨣ 𝑎 ) = 𝑎 ∧ ( 𝑎 ⨣ ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ) = 𝑎 ) ) ) |
| 117 | 116 | rspcev | ⊢ ( ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ∈ 𝑌 ∧ ∀ 𝑎 ∈ 𝑌 ( ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ⨣ 𝑎 ) = 𝑎 ∧ ( 𝑎 ⨣ ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ) = 𝑎 ) ) → ∃ 𝑑 ∈ 𝑌 ∀ 𝑎 ∈ 𝑌 ( ( 𝑑 ⨣ 𝑎 ) = 𝑎 ∧ ( 𝑎 ⨣ 𝑑 ) = 𝑎 ) ) |
| 118 | 89 113 117 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑑 ∈ 𝑌 ∀ 𝑎 ∈ 𝑌 ( ( 𝑑 ⨣ 𝑎 ) = 𝑎 ∧ ( 𝑎 ⨣ 𝑑 ) = 𝑎 ) ) |
| 119 | 3 5 | ismnd | ⊢ ( 𝐻 ∈ Mnd ↔ ( ∀ 𝑎 ∈ 𝑌 ∀ 𝑏 ∈ 𝑌 ( ( 𝑎 ⨣ 𝑏 ) ∈ 𝑌 ∧ ∀ 𝑐 ∈ 𝑌 ( ( 𝑎 ⨣ 𝑏 ) ⨣ 𝑐 ) = ( 𝑎 ⨣ ( 𝑏 ⨣ 𝑐 ) ) ) ∧ ∃ 𝑑 ∈ 𝑌 ∀ 𝑎 ∈ 𝑌 ( ( 𝑑 ⨣ 𝑎 ) = 𝑎 ∧ ( 𝑎 ⨣ 𝑑 ) = 𝑎 ) ) ) |
| 120 | 85 118 119 | sylanbrc | ⊢ ( 𝜑 → 𝐻 ∈ Mnd ) |