This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function fulfilling the conditions of mhmmnd is a monoid homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghmgrp.f | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) | |
| ghmgrp.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | ||
| ghmgrp.y | ⊢ 𝑌 = ( Base ‘ 𝐻 ) | ||
| ghmgrp.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| ghmgrp.q | ⊢ ⨣ = ( +g ‘ 𝐻 ) | ||
| ghmgrp.1 | ⊢ ( 𝜑 → 𝐹 : 𝑋 –onto→ 𝑌 ) | ||
| mhmmnd.3 | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | ||
| Assertion | mhmfmhm | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmgrp.f | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) | |
| 2 | ghmgrp.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 3 | ghmgrp.y | ⊢ 𝑌 = ( Base ‘ 𝐻 ) | |
| 4 | ghmgrp.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 5 | ghmgrp.q | ⊢ ⨣ = ( +g ‘ 𝐻 ) | |
| 6 | ghmgrp.1 | ⊢ ( 𝜑 → 𝐹 : 𝑋 –onto→ 𝑌 ) | |
| 7 | mhmmnd.3 | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | |
| 8 | 1 2 3 4 5 6 7 | mhmmnd | ⊢ ( 𝜑 → 𝐻 ∈ Mnd ) |
| 9 | fof | ⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → 𝐹 : 𝑋 ⟶ 𝑌 ) | |
| 10 | 6 9 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 11 | 1 | 3expb | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) |
| 12 | 11 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) |
| 13 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 14 | 1 2 3 4 5 6 7 13 | mhmid | ⊢ ( 𝜑 → ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐻 ) ) |
| 15 | 10 12 14 | 3jca | ⊢ ( 𝜑 → ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐻 ) ) ) |
| 16 | eqid | ⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) | |
| 17 | 2 3 4 5 13 16 | ismhm | ⊢ ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ↔ ( ( 𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd ) ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐻 ) ) ) ) |
| 18 | 7 8 15 17 | syl21anbrc | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ) |