This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mhmmnd and ghmgrp . (Contributed by Paul Chapman, 25-Apr-2008) (Revised by Mario Carneiro, 12-May-2014) (Revised by Thierry Arnoux, 25-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghmgrp.f | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) | |
| mhmlem.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | ||
| mhmlem.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑋 ) | ||
| Assertion | mhmlem | ⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) = ( ( 𝐹 ‘ 𝐴 ) ⨣ ( 𝐹 ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmgrp.f | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) | |
| 2 | mhmlem.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 3 | mhmlem.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑋 ) | |
| 4 | id | ⊢ ( 𝜑 → 𝜑 ) | |
| 5 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝑋 ↔ 𝐴 ∈ 𝑋 ) ) | |
| 6 | 5 | 3anbi2d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ↔ ( 𝜑 ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) |
| 7 | fvoveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( 𝐹 ‘ ( 𝐴 + 𝑦 ) ) ) | |
| 8 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐴 ) ) | |
| 9 | 8 | oveq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝐴 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) |
| 10 | 7 9 | eqeq12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ ( 𝐴 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝐴 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 11 | 6 10 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( ( 𝜑 ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝐴 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝐴 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 12 | eleq1 | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 ∈ 𝑋 ↔ 𝐵 ∈ 𝑋 ) ) | |
| 13 | 12 | 3anbi3d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝜑 ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ↔ ( 𝜑 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) ) |
| 14 | oveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 + 𝑦 ) = ( 𝐴 + 𝐵 ) ) | |
| 15 | 14 | fveq2d | ⊢ ( 𝑦 = 𝐵 → ( 𝐹 ‘ ( 𝐴 + 𝑦 ) ) = ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) ) |
| 16 | fveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐵 ) ) | |
| 17 | 16 | oveq2d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐹 ‘ 𝐴 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝐴 ) ⨣ ( 𝐹 ‘ 𝐵 ) ) ) |
| 18 | 15 17 | eqeq12d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐹 ‘ ( 𝐴 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝐴 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) = ( ( 𝐹 ‘ 𝐴 ) ⨣ ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 19 | 13 18 | imbi12d | ⊢ ( 𝑦 = 𝐵 → ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝐴 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝐴 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( ( 𝜑 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) = ( ( 𝐹 ‘ 𝐴 ) ⨣ ( 𝐹 ‘ 𝐵 ) ) ) ) ) |
| 20 | 11 19 1 | vtocl2g | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝜑 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) = ( ( 𝐹 ‘ 𝐴 ) ⨣ ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 21 | 2 3 20 | syl2anc | ⊢ ( 𝜑 → ( ( 𝜑 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) = ( ( 𝐹 ‘ 𝐴 ) ⨣ ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 22 | 4 2 3 21 | mp3and | ⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) = ( ( 𝐹 ‘ 𝐴 ) ⨣ ( 𝐹 ‘ 𝐵 ) ) ) |