This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The equalizer of two monoid homomorphisms is a submonoid. (Contributed by Stefan O'Rear, 7-Mar-2015) (Revised by Mario Carneiro, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mhmeql | |- ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) -> dom ( F i^i G ) e. ( SubMnd ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 2 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 3 | 1 2 | mhmf | |- ( F e. ( S MndHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
| 4 | 3 | adantr | |- ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
| 5 | 4 | ffnd | |- ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) -> F Fn ( Base ` S ) ) |
| 6 | 1 2 | mhmf | |- ( G e. ( S MndHom T ) -> G : ( Base ` S ) --> ( Base ` T ) ) |
| 7 | 6 | adantl | |- ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) -> G : ( Base ` S ) --> ( Base ` T ) ) |
| 8 | 7 | ffnd | |- ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) -> G Fn ( Base ` S ) ) |
| 9 | fndmin | |- ( ( F Fn ( Base ` S ) /\ G Fn ( Base ` S ) ) -> dom ( F i^i G ) = { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) |
|
| 10 | 5 8 9 | syl2anc | |- ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) -> dom ( F i^i G ) = { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) |
| 11 | ssrab2 | |- { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } C_ ( Base ` S ) |
|
| 12 | 11 | a1i | |- ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) -> { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } C_ ( Base ` S ) ) |
| 13 | fveq2 | |- ( z = ( 0g ` S ) -> ( F ` z ) = ( F ` ( 0g ` S ) ) ) |
|
| 14 | fveq2 | |- ( z = ( 0g ` S ) -> ( G ` z ) = ( G ` ( 0g ` S ) ) ) |
|
| 15 | 13 14 | eqeq12d | |- ( z = ( 0g ` S ) -> ( ( F ` z ) = ( G ` z ) <-> ( F ` ( 0g ` S ) ) = ( G ` ( 0g ` S ) ) ) ) |
| 16 | mhmrcl1 | |- ( F e. ( S MndHom T ) -> S e. Mnd ) |
|
| 17 | 16 | adantr | |- ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) -> S e. Mnd ) |
| 18 | eqid | |- ( 0g ` S ) = ( 0g ` S ) |
|
| 19 | 1 18 | mndidcl | |- ( S e. Mnd -> ( 0g ` S ) e. ( Base ` S ) ) |
| 20 | 17 19 | syl | |- ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) -> ( 0g ` S ) e. ( Base ` S ) ) |
| 21 | eqid | |- ( 0g ` T ) = ( 0g ` T ) |
|
| 22 | 18 21 | mhm0 | |- ( F e. ( S MndHom T ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) |
| 23 | 22 | adantr | |- ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) |
| 24 | 18 21 | mhm0 | |- ( G e. ( S MndHom T ) -> ( G ` ( 0g ` S ) ) = ( 0g ` T ) ) |
| 25 | 24 | adantl | |- ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) -> ( G ` ( 0g ` S ) ) = ( 0g ` T ) ) |
| 26 | 23 25 | eqtr4d | |- ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) -> ( F ` ( 0g ` S ) ) = ( G ` ( 0g ` S ) ) ) |
| 27 | 15 20 26 | elrabd | |- ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) -> ( 0g ` S ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) |
| 28 | fveq2 | |- ( z = ( x ( +g ` S ) y ) -> ( F ` z ) = ( F ` ( x ( +g ` S ) y ) ) ) |
|
| 29 | fveq2 | |- ( z = ( x ( +g ` S ) y ) -> ( G ` z ) = ( G ` ( x ( +g ` S ) y ) ) ) |
|
| 30 | 28 29 | eqeq12d | |- ( z = ( x ( +g ` S ) y ) -> ( ( F ` z ) = ( G ` z ) <-> ( F ` ( x ( +g ` S ) y ) ) = ( G ` ( x ( +g ` S ) y ) ) ) ) |
| 31 | 17 | ad2antrr | |- ( ( ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> S e. Mnd ) |
| 32 | simplrl | |- ( ( ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> x e. ( Base ` S ) ) |
|
| 33 | simprl | |- ( ( ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> y e. ( Base ` S ) ) |
|
| 34 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 35 | 1 34 | mndcl | |- ( ( S e. Mnd /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( x ( +g ` S ) y ) e. ( Base ` S ) ) |
| 36 | 31 32 33 35 | syl3anc | |- ( ( ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> ( x ( +g ` S ) y ) e. ( Base ` S ) ) |
| 37 | simplll | |- ( ( ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> F e. ( S MndHom T ) ) |
|
| 38 | eqid | |- ( +g ` T ) = ( +g ` T ) |
|
| 39 | 1 34 38 | mhmlin | |- ( ( F e. ( S MndHom T ) /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
| 40 | 37 32 33 39 | syl3anc | |- ( ( ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
| 41 | simpllr | |- ( ( ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> G e. ( S MndHom T ) ) |
|
| 42 | 1 34 38 | mhmlin | |- ( ( G e. ( S MndHom T ) /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( G ` ( x ( +g ` S ) y ) ) = ( ( G ` x ) ( +g ` T ) ( G ` y ) ) ) |
| 43 | 41 32 33 42 | syl3anc | |- ( ( ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> ( G ` ( x ( +g ` S ) y ) ) = ( ( G ` x ) ( +g ` T ) ( G ` y ) ) ) |
| 44 | simplrr | |- ( ( ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> ( F ` x ) = ( G ` x ) ) |
|
| 45 | simprr | |- ( ( ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> ( F ` y ) = ( G ` y ) ) |
|
| 46 | 44 45 | oveq12d | |- ( ( ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> ( ( F ` x ) ( +g ` T ) ( F ` y ) ) = ( ( G ` x ) ( +g ` T ) ( G ` y ) ) ) |
| 47 | 43 46 | eqtr4d | |- ( ( ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> ( G ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
| 48 | 40 47 | eqtr4d | |- ( ( ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( G ` ( x ( +g ` S ) y ) ) ) |
| 49 | 30 36 48 | elrabd | |- ( ( ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> ( x ( +g ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) |
| 50 | 49 | expr | |- ( ( ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ y e. ( Base ` S ) ) -> ( ( F ` y ) = ( G ` y ) -> ( x ( +g ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) ) |
| 51 | 50 | ralrimiva | |- ( ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) -> A. y e. ( Base ` S ) ( ( F ` y ) = ( G ` y ) -> ( x ( +g ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) ) |
| 52 | fveq2 | |- ( z = y -> ( F ` z ) = ( F ` y ) ) |
|
| 53 | fveq2 | |- ( z = y -> ( G ` z ) = ( G ` y ) ) |
|
| 54 | 52 53 | eqeq12d | |- ( z = y -> ( ( F ` z ) = ( G ` z ) <-> ( F ` y ) = ( G ` y ) ) ) |
| 55 | 54 | ralrab | |- ( A. y e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ( x ( +g ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } <-> A. y e. ( Base ` S ) ( ( F ` y ) = ( G ` y ) -> ( x ( +g ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) ) |
| 56 | 51 55 | sylibr | |- ( ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) -> A. y e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ( x ( +g ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) |
| 57 | 56 | expr | |- ( ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) /\ x e. ( Base ` S ) ) -> ( ( F ` x ) = ( G ` x ) -> A. y e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ( x ( +g ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) ) |
| 58 | 57 | ralrimiva | |- ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) -> A. x e. ( Base ` S ) ( ( F ` x ) = ( G ` x ) -> A. y e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ( x ( +g ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) ) |
| 59 | fveq2 | |- ( z = x -> ( F ` z ) = ( F ` x ) ) |
|
| 60 | fveq2 | |- ( z = x -> ( G ` z ) = ( G ` x ) ) |
|
| 61 | 59 60 | eqeq12d | |- ( z = x -> ( ( F ` z ) = ( G ` z ) <-> ( F ` x ) = ( G ` x ) ) ) |
| 62 | 61 | ralrab | |- ( A. x e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } A. y e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ( x ( +g ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } <-> A. x e. ( Base ` S ) ( ( F ` x ) = ( G ` x ) -> A. y e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ( x ( +g ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) ) |
| 63 | 58 62 | sylibr | |- ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) -> A. x e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } A. y e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ( x ( +g ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) |
| 64 | 1 18 34 | issubm | |- ( S e. Mnd -> ( { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } e. ( SubMnd ` S ) <-> ( { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } C_ ( Base ` S ) /\ ( 0g ` S ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } /\ A. x e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } A. y e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ( x ( +g ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) ) ) |
| 65 | 17 64 | syl | |- ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) -> ( { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } e. ( SubMnd ` S ) <-> ( { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } C_ ( Base ` S ) /\ ( 0g ` S ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } /\ A. x e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } A. y e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ( x ( +g ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) ) ) |
| 66 | 12 27 63 65 | mpbir3and | |- ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) -> { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } e. ( SubMnd ` S ) ) |
| 67 | 10 66 | eqeltrd | |- ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) -> dom ( F i^i G ) e. ( SubMnd ` S ) ) |